cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A176988 Triangle read by rows, which contains Noll's indices of Zernike polynomials in row n sorted along increasing index of the azimuthal quantum number.

This page as a plain text file.
%I A176988 #28 Apr 02 2025 04:38:54
%S A176988 1,3,2,5,4,6,9,7,8,10,15,13,11,12,14,21,19,17,16,18,20,27,25,23,22,24,
%T A176988 26,28,35,33,31,29,30,32,34,36,45,43,41,39,37,38,40,42,44,55,53,51,49,
%U A176988 47,46,48,50,52,54,65,63,61,59,57,56,58,60,62,64,66,77,75,73,71,69,67,68,70,72,74,76,78,91,89,87,85,83,81,79,80,82,84,86,88,90,105,103,101,99,97,95,93,92,94,96,98,100,102,104,119,117,115,113,111,109,107,106,108,110,112,114,116,118,120
%N A176988 Triangle read by rows, which contains Noll's indices of Zernike polynomials in row n sorted along increasing index of the azimuthal quantum number.
%C A176988 The natural arrangement of the indices n (radial index) and m (azimuthal index) of the Zernike polynomial Z(n,m) is a triangle with row index n, in each row m ranging from -n to n in steps of 2:
%C A176988    (0,0)
%C A176988    (1,-1) (1,1)
%C A176988    (2,-2) (2,0) (2,2)
%C A176988    (3,-3) (3,-1) (3,1) (3,3)
%C A176988    (4,-4) (4,-2) (4,0) (4,2) (4,4)
%C A176988    (5,-5) (5,-3) (5,-1) (5,1) (5,3) (5,5)
%C A176988    (6,-6) (6,-4) (6,-2) (6,0) (6,2) (6,4) (6,6)
%C A176988    (7,-7) (7,-5) (7,-3) (7,-1) (7,1) (7,3) (7,5) (7,7)
%C A176988 For uses in linear algebra related to beam optics, a standard scheme of assigning a single index j>=1 to each double-index (n,m) has become a de-facto standard, proposed by Noll. The triangle of the j at the equivalent positions reads
%C A176988    1,
%C A176988    3, 2,
%C A176988    5, 4, 6,
%C A176988    9, 7, 8,10,
%C A176988   15,13,11,12,14,
%C A176988   21,19,17,16,18,20,
%C A176988   27,25,23,22,24,26,28,
%C A176988   35,33,31,29,30,32,34,36,
%C A176988 which defines the OEIS entries. The rule of translation is that odd j are assigned to m<0, even j to m>0, and smaller j to smaller |m|.
%H A176988 N. Chetty and D. J. Griffith, <a href="http://dx.doi.org/10.1016/j.cap.2015.03.017">Zernike-basis expansion of the fractional and radial Hilbert phase masks</a>, Current Applied Physics, 15 (2015) 739-747
%H A176988 R. J. Noll, <a href="http://dx.doi.org/10.1364/JOSA.66.000207">Zernike polynomials and atmospheric turbulence</a>, J. Opt. Soc. Am 66 (1976) 207.
%H A176988 Gerhard Ramsebner, <a href="/A176988/a176988.svg">Nollindex of the Zernike polynomials (animated SVG)</a>
%H A176988 Thomas Risse, <a href="http://www.weblearn.hs-bremen.de/risse/papers/SiP27/Zernike.pdf">Least Square Approximation with Zernike Polynomials Using SAGE</a>, (2011).
%H A176988 Wikipedia, <a href="http://en.wikipedia.org/wiki/Zernike_polynomials">Zernike Polynomials</a>
%H A176988 <a href="/index/Per#IntegerPermutation">Index to sequences related to the permutation of the positive integers</a>
%F A176988 T(n,k) = n*(n+1)/2 + abs(m) + h where 0<=k<=n, j=k+n*(n+1)/2, m=2*j-n*(n+2) and h=1 if mod(n,4)<=1 and m<=0 or mod(n,4)>1 and m>=0 otherwise h=0. - _Gerhard Ramsebner_, Nov 10 2024
%p A176988 Noll := proc(n,m)
%p A176988     n*(n+1)/2+abs(m) ;
%p A176988     if m>=0 and modp(n,4) in {2,3} then
%p A176988         %+1 ;
%p A176988     elif m<=0 and modp(n,4) in {0,1} then
%p A176988         %+1 ;
%p A176988     else
%p A176988         % ;
%p A176988     end if;
%p A176988 end proc:
%p A176988 A176988 := proc(n,k)
%p A176988     Noll(n,-n+2*k) ;
%p A176988 end proc:
%p A176988 seq(seq(A176988(n,k),k=0..n),n=0..10) ; # _R. J. Mathar_, Mar 27 2025
%o A176988 (PARI) A176988(n, k) = my(j=k+n*(n+1)/2, m=2*j-n*(n+2)); (n*(n+1)/2 + abs(m) + ((n%4<=1 && m<=0) || (n%4>1 && m>=0)) );
%o A176988 row(n) = vector(n+1, k, A176988(n, k-1)); \\ _Gerhard Ramsebner_, Nov 10 2024
%K A176988 nonn,easy,tabl
%O A176988 0,2
%A A176988 _R. J. Mathar_, Dec 08 2010