This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A176992 #23 Sep 08 2022 08:45:53 %S A176992 1,3,1,10,4,1,35,15,5,1,126,56,21,6,1,462,210,84,28,7,1,1716,792,330, %T A176992 120,36,8,1,6435,3003,1287,495,165,45,9,1,24310,11440,5005,2002,715, %U A176992 220,55,10,1,92378,43758,19448,8008,3003,1001,286,66,11,1,352716,167960,75582,31824,12376,4368,1365,364,78,12,1 %N A176992 Triangle T(n,m) = binomial(2n-k+1, n+1) read by rows, 0 <= k <= n. %C A176992 Row sums are A001791. %C A176992 Obtained from A059481 by removal of the last two terms in each row, followed by row reversal. %C A176992 Riordan array (c(x)/sqrt(1 - 4*x), x*c(x)) where c(x) is the g.f. of A000108. - _Philippe Deléham_, Jul 12 2015 %F A176992 n-th row of the triangle = top row of M^n, where M is the following infinite square production matrix: %F A176992 3, 1, 0, 0, 0, ... %F A176992 1, 1, 1, 0, 0, ... %F A176992 1, 1, 1, 1, 0, ... %F A176992 1, 1, 1, 1, 1, ... %F A176992 ... - _Philippe Deléham_, Jul 12 2015 %e A176992 Triangle begins: %e A176992 1; %e A176992 3, 1; %e A176992 10, 4, 1; %e A176992 35, 15, 5, 1; %e A176992 126, 56, 21, 6, 1; %e A176992 462, 210, 84, 28, 7, 1; %e A176992 1716, 792, 330, 120, 36, 8, 1; %e A176992 6435, 3003, 1287, 495, 165, 45, 9, 1; %e A176992 24310, 11440, 5005, 2002, 715, 220, 55, 10, 1; %e A176992 92378, 43758, 19448, 8008, 3003, 1001, 286, 66, 11, 1; %e A176992 352716, 167960, 75582, 31824, 12376, 4368, 1365, 364, 78, 12, 1; %p A176992 A176992 := proc(n,k) binomial(1+2*n-k,n+1) ; end proc: # _R. J. Mathar_, Dec 09 2010 %t A176992 p[t_, j_] = ((-1)^(j + 1)/2)*Sum[Binomial[k - j - 1, j + 1]*t^k, {k, 0, Infinity}]; %t A176992 Flatten[Table[CoefficientList[ExpandAll[p[t, j]], t], {j, 0, 10}]] %o A176992 (Magma) /* As triangle */ [[Binomial(2*n-k+1,n+1): k in [0..n]]: n in [0.. 10]]; // _Vincenzo Librandi_, Jul 12 2015 %Y A176992 Cf. A092392, A001791, A078812. %Y A176992 Cf. Similar triangle: A033184, A054445. %Y A176992 Cf. A178300 (reversal). %K A176992 nonn,tabl,easy %O A176992 0,2 %A A176992 _Roger L. Bagula_, Dec 08 2010