cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177011 Define two triangular arrays by: B(0,0)=C(0,0)=1, B(0,r)=C(0,r)=0 for r>0, C(t,-1)=C(t,0); and for t,r >= 0, B(t+1,r)=C(t,r-1)+2C(t,r)-B(t,r), C(t+1,r)=B(t+1,r)+2B(t+1,r+1)-C(t,r). Sequence gives array B(t,r) read by rows.

Original entry on oeis.org

1, 2, 1, 7, 4, 1, 29, 18, 6, 1, 130, 85, 33, 8, 1, 611, 414, 177, 52, 10, 1, 2965, 2062, 943, 313, 75, 12, 1, 14726, 10447, 5023, 1817, 501, 102, 14, 1, 74443, 53650, 26818, 10348, 3152, 749, 133, 16, 1, 381617, 278568, 143655, 58305, 19147, 5080, 1065, 168, 18, 1
Offset: 0

Views

Author

N. J. A. Sloane, Dec 08 2010

Keywords

Examples

			Triangle begins
1
2   1
7   4   1
29  18  6   1
130 85  33  8  1
611 414 177 52 10 1
...
		

Crossrefs

Cf. A177020.

Programs

  • Maple
    B:=proc(t,r)global b:if(not type(b[t,r],integer))then if(t=0 and r=0)then b[t,r]:=1:elif(t=0)then b[t,r]:=0:else b[t,r]:=C(t-1,r-1)+2*C(t-1,r)-B(t-1,r):fi:fi:return b[t,r]:end:
    C:=proc(t,r)global c:if(not type(c[t,r],integer))then if(r=-1)then return C(t,0):fi:if(t=0 and r=0)then c[t,r]:=1:elif(t=0)then c[t,r]:=0:else c[t,r]:=B(t,r)+2*B(t,r+1)-C(t-1,r):fi:fi:return c[t,r]:end:
    for t from 0 to 9 do for r from 0 to t do print(B(t,r)):od:od: # Nathaniel Johnston, Apr 15 2011
  • Mathematica
    bb[t_, r_] := Module[{}, If[Not[IntegerQ[b[t, r]]], Which[t == 0 && r == 0, b[t, r] = 1, t == 0, b[t, r] = 0, True, b[t, r] = cc[t-1, r-1] + 2*cc[t-1, r] - bb[t-1, r]]]; Return[b[t, r]]]; cc[t_, r_] := Module[{}, If[Not[IntegerQ[c[t, r]]], If[r == -1, Return[cc[t, 0]], Which[t == 0 && r == 0, c[t, r] = 1, t == 0, c[t, r] = 0, True, c[t, r] = bb[t, r] + 2*bb[t, r+1] - cc[t-1, r]]]]; Return[c[t, r]]]; Table[bb[t, r], {t, 0, 9}, {r, 0, t}] // Flatten (* Jean-François Alcover, Jan 08 2014, translated from Maple *)

Extensions

a(15)-a(54) from Nathaniel Johnston, Apr 15 2011