A177020 Define two triangular arrays by: B(0,0)=C(0,0)=1, B(0,r)=C(0,r)=0 for r>0, C(t,-1)=C(t,0); and for t,r >= 0, B(t+1,r)=C(t,r-1)+2C(t,r)-B(t,r), C(t+1,r)=B(t+1,r)+2B(t+1,r+1)-C(t,r). Sequence gives array C(t,r) read by rows.
1, 3, 1, 12, 5, 1, 53, 25, 7, 1, 247, 126, 42, 9, 1, 1192, 642, 239, 63, 11, 1, 5897, 3306, 1330, 400, 88, 13, 1, 29723, 17187, 7327, 2419, 617, 117, 15, 1, 152020, 90099, 40187, 14233, 4033, 898, 150, 17, 1
Offset: 0
Examples
Triangle begins 1 3 1 12 5 1 53 25 7 1 247 126 42 9 1 1192 642 239 63 11 1 ...
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..5150 (first 100 rows of the triangle)
- P. Fahr, C. M. Ringel, A partition formula for fibonacci numbers, JIS 11 (2008) 08.1.4, section 4.
- H. Kwong, On recurrences of Fahr and Ringel: An Alternate Approach, Fib. Quart., 48 (2010), 363-365.
Crossrefs
Cf. A177011.
Programs
-
Maple
B:=proc(t,r)global b:if(not type(b[t,r],integer))then if(t=0 and r=0)then b[t,r]:=1:elif(t=0)then b[t,r]:=0:else b[t,r]:=C(t-1,r-1)+2*C(t-1,r)-B(t-1,r):fi:fi:return b[t,r]:end: C:=proc(t,r)global c:if(not type(c[t,r],integer))then if(r=-1)then return C(t,0):fi:if(t=0 and r=0)then c[t,r]:=1:elif(t=0)then c[t,r]:=0:else c[t,r]:=B(t,r)+2*B(t,r+1)-C(t-1,r):fi:fi:return c[t,r]:end: for t from 0 to 8 do for r from 0 to t do print(C(t,r)):od:od: # Nathaniel Johnston, Apr 15 2011
-
Mathematica
bb[t_, r_] := Module[{}, If[Not[IntegerQ[b[t, r]]], Which[t == 0 && r == 0, b[t, r] = 1, t == 0, b[t, r] = 0, True, b[t, r] = cc[t-1, r-1] + 2*cc[t-1, r] - bb[t-1, r]]]; Return[b[t, r]]]; cc[t_, r_] := Module[{}, If[Not[IntegerQ[c[t, r]]], If[r == -1, Return[cc[t, 0]], Which[t == 0 && r == 0, c[t, r] = 1, t == 0, c[t, r] = 0, True, c[t, r] = bb[t, r] + 2*bb[t, r+1] - cc[t-1, r]]]]; Return[c[t, r]]]; Table[cc[t, r], {t, 0, 8}, {r, 0, t}] // Flatten (* Jean-François Alcover, Jan 08 2014, translated from Maple *)
Extensions
a(15)-a(44) from Nathaniel Johnston, Apr 15 2011