This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A177049 #32 Oct 13 2024 19:36:41 %S A177049 1,5,14,55,91,68,95,253,325,203,248,595,703,410,473,1081,1225,689,770, %T A177049 1711,1891,1040,1139,2485,2701,1463,1580,3403,3655,1958,2093,4465, %U A177049 4753,2525,2678,5671,5995,3164,3335,7021,7381,3875,4064,8515,8911 %N A177049 Numerator of (3n+1)*(3n+2)/4. %C A177049 A trisection of A064038. %H A177049 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (3,-6,10,-12,12,-10,6,-3,1). %F A177049 Conjecture: a(n)= +3*a(n-1) -6*a(n-2) +10*a(n-3) -12*a(n-4) +12*a(n-5) -10*a(n-6) +6*a(n-7) -3*a(n-8) +a(n-9) with g.f. -(x^2+4*x+1)*(x^6-2*x^5+12*x^4-13*x^3+12*x^2-2*x+1) / ( (x-1)^3*(x^2+1)^3 ). - _R. J. Mathar_, Dec 12 2010 %F A177049 The conjecture is correct. - _Charles R Greathouse IV_, Feb 08 2012 %F A177049 a(n) ~ -27/8*n^2 - 27/8*n. - _Ralf Stephan_, Jun 16 2014 %F A177049 Sum_{n>=0} 1/a(n) = (4/(3*sqrt(3)) - 1/3)*Pi. - _Amiram Eldar_, Aug 13 2022 %t A177049 Table[Numerator[(3 n + 1) (3 n + 2)/4], {n, 0, 50}] (* _Wesley Ivan Hurt_, Jun 14 2014 *) %t A177049 LinearRecurrence[{3,-6,10,-12,12,-10,6,-3,1},{1,5,14,55,91,68,95,253,325},50] (* _Harvey P. Dale_, Jan 18 2020 *) %Y A177049 Cf. A064038, A127922. %K A177049 nonn,frac,less,easy %O A177049 0,2 %A A177049 _Paul Curtz_, Dec 09 2010