cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177057 Decimal expansion of 7/6.

This page as a plain text file.
%I A177057 #16 Oct 05 2024 22:14:23
%S A177057 1,1,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
%T A177057 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
%U A177057 6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6
%N A177057 Decimal expansion of 7/6.
%C A177057 7/6 is the 14th Bernoulli number. - _Jean-François Alcover_, Dec 24 2013
%H A177057 Michael I. Shamos, <a href="http://euro.ecom.cmu.edu/people/faculty/mshamos/cat.pdf">A catalog of the real numbers</a>, (2007). See pp. 208-209.
%H A177057 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1).
%F A177057 From _Elmo R. Oliveira_, Aug 03 2024: (Start)
%F A177057 G.f.: x*(1 + x) + 6*x^3/(1 - x).
%F A177057 E.g.f.: 6*exp(x) - 5*(1 + x).
%F A177057 a(n) = 6, n >= 3. (End)
%F A177057 Equals zeta(4)^2/zeta(8) = Sum_{k>=1} 2^omega(k)/k^4 = Product_{p prime} (p^4 + 1)/(p^4 - 1). See Shamos link. - _Stefano Spezia_, Oct 05 2024
%e A177057 1.16666666666...
%t A177057 RealDigits[7/6,10,120][[1]] (* or *) PadRight[{1,1},120,{6}] (* _Harvey P. Dale_, Nov 20 2023 *)
%Y A177057 Cf. A177022, A177056.
%K A177057 nonn,cons,easy
%O A177057 1,3
%A A177057 _Vincenzo Librandi_, May 26 2010
%E A177057 Edited by _Rick L. Shepherd_, Jun 17 2010