This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A177058 #17 Apr 11 2022 12:59:47 %S A177058 3,1,-1,3,19,53,111,199,323,489,703,971,1299,1693,2159,2703,3331,4049, %T A177058 4863,5779,6803,7941,9199,10583,12099,13753,15551,17499,19603,21869, %U A177058 24303,26911,29699,32673,35839,39203,42771,46549,50543,54759,59203 %N A177058 a(n) = n^3 - 3n^2 + 3. %C A177058 For n>2, fourth diagonal of A162611. %H A177058 B. Berselli, <a href="/A177058/b177058.txt">Table of n, a(n) for n = 0..10000</a> %H A177058 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A177058 From _Bruno Berselli_, Jun 04 2010: (Start) %F A177058 G.f.: (3-11*x+13*x^2+x^3)/(1-x)^4. %F A177058 a(n)-4*a(n-1)+6*a(n-2)-4*a(n-3)+a(n-4) = 0, with n>3. %F A177058 a(n)+a(n-1) = 2*A081438(n-3), with n>2. (End) %F A177058 G.f.: 3+x+x^2*G(0) where G(k) = 1 - x*(k+1)*(k+1)*(k+4)/(1 - 1/(1 - (k+1)*(k+1)*(k+4)/G(k+1))); (continued fraction, 3-step). - _Sergei N. Gladkovskii_, Oct 16 2012 %t A177058 Table[n^3-3n^2+3,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{3,1,-1,3},50] (* _Harvey P. Dale_, May 15 2020 *) %o A177058 (PARI) a(n)=n^3-3*n^2+3 \\ _Charles R Greathouse IV_, Jan 11 2012 %Y A177058 Cf. A162611, A081438. %K A177058 sign,easy %O A177058 0,1 %A A177058 _Vincenzo Librandi_, May 27 2010