This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A177061 #22 Sep 09 2023 21:59:36 %S A177061 2,3,5,7,23,37,53,73,257,523,2357,2753,3257,3527,5237,5273,7253,7523 %N A177061 Primes p formed from single-digit primes only, each used at most once. %C A177061 List of (p,i): (2,1), (3,2), (5,3), (7,4), (23,9), (37,12), (53,16), (73,21), (257,55), (523,99), (2357,350), (2753,402), (3257,460), (3527,492), (5237,697), (5273, 699), (7253,928), (7523,953). %C A177061 There are exactly eight primes whose digits are primes in strictly increasing order: 2, 3, 5, 7, 23, 37, 257, 2357. - _James C. McMahon_, Jul 04 2023 %C A177061 There are exactly six primes whose digits are primes in strictly decreasing order: 2, 3, 5, 7, 53, 73. - _James C. McMahon_, Aug 09 2023 %D A177061 E. I. Ignatjew, Mathematische Spielereien, Urania Verlag Leipzig/Jena/Berlin 1982 %e A177061 3//7 = 37 = prime(12) is the 6th term. %e A177061 2//3//5//7 = 2357 = prime(350) is the 11th term %e A177061 p = 7//5//2//3 = 7523 = prime(953) = A033548(59) is the last term. %t A177061 Select[FromDigits/@Flatten[Permutations/@Subsets[{2,3,5,7}],1],PrimeQ]// Union (* _Harvey P. Dale_, Sep 08 2021 *) %o A177061 (PARI) isok(p) = {my(d = digits(p)); if (#d == #Set(d) && vecmin(apply(isprime, d)) == 1, return (1)); return(0);} %o A177061 lista() = {forprime(p=1, 100000, if (isok(p), print1(p, ", ")););} \\ _Michel Marcus_, Aug 07 2020 %Y A177061 Cf. A000040, A168349, A168385, A347612 %K A177061 easy,base,fini,full,nonn %O A177061 1,1 %A A177061 Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), May 02 2010 %E A177061 Edited by Assoc. Eds. OEIS, May 09 2010 %E A177061 Missing term 5273 added by _Eren Donmez_, Aug 07 2020 %E A177061 Cross reference added by _Harvey P. Dale_, Sep 09 2021