cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177333 Smallest factor in the factorization of n! over distinct terms of A050376.

This page as a plain text file.
%I A177333 #11 Sep 17 2019 16:25:34
%S A177333 2,2,2,2,5,5,2,2,7,7,3,3,2,2,2,2,5,5,4,3,2,2,4,4,2,2,2,2,4,4,2,2,3,3,
%T A177333 3,3,2,2,4,4,2,2,2,2,3,3,4,4,2,2,2,2,4,4,2,2,3,3,7,7,2,2,2,2,3,3,3,4,
%U A177333 2,2,4,4,2,2,2,2,4,4,4,4,2,2,2,2,3,4,2,2,4,4,5,3,2,2,4,4,2,2,2,2,3,3,2,2,4
%N A177333 Smallest factor in the factorization of n! over distinct terms of A050376.
%D A177333 V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 [Russian].
%H A177333 Amiram Eldar, <a href="/A177333/b177333.txt">Table of n, a(n) for n = 2..1000</a>
%H A177333 S. Litsyn and V. S. Shevelev, <a href="http://www.emis.de/journals/INTEGERS/papers/h33/h33.Abstract.html">On factorization of integers with restrictions on the exponent</a>, INTEGERS: Electronic Journal of Combinatorial Number Theory, 7 (2007), #A33, 1-36.
%e A177333 The factorization of 10! = 3628800 is 2^8*3^4*5^2*7^1, where 2^8 > 3^4 > 5^2 > 7, so a(10)=7 is the smallest of these 4 factors.
%p A177333 A177333 := proc(n) local a,p,pow2 ; a := n! ; for p in ifactors(n!)[2] do pow2 := convert( op(2,p),base,2) ; for j from 1 to nops(pow2) do if op(j,pow2) <> 0 then a := min(a,op(1,p)^(2^(j-1))) ; end if; end do: end do: return a ; end proc:
%p A177333 seq(A177333(n),n=2..120) ; # _R. J. Mathar_, Jun 16 2010
%t A177333 b[n_] :=2^(-1+Position[ Reverse@IntegerDigits[n, 2],_?(#==1&)])//Flatten; a[n_] := Module[{np = PrimePi[n]}, v=Table[0,{np}]; Do[p = Prime[k]; Do[v[[k]] += IntegerExponent[j, p], {j,2,n}],  {k,1,np}]; Min[(Prime/@Range[np])^(b/@v) // Flatten]]; Array[a, 105, 2] (* _Amiram Eldar_, Sep 17 2019 *)
%Y A177333 Cf. A050376, A177329, A055460, A176525, A001358, A176472, A176509, A064380, A050292.
%K A177333 nonn
%O A177333 2,1
%A A177333 _Vladimir Shevelev_, May 06 2010
%E A177333 Corrected from a(10) on and extended beyond a(30) by _R. J. Mathar_, Jun 16 2010