cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177334 Largest factor in the factorization of n! over distinct terms of A050376.

This page as a plain text file.
%I A177334 #18 Sep 17 2019 16:28:52
%S A177334 2,3,4,5,16,16,16,81,256,256,256,256,256,256,256,256,65536,65536,
%T A177334 65536,65536,65536,65536,65536,65536,65536,65536,65536,65536,65536,
%U A177334 65536,65536,65536,4294967296,4294967296,4294967296,4294967296,4294967296,4294967296
%N A177334 Largest factor in the factorization of n! over distinct terms of A050376.
%C A177334 Each number >=2 has a unique factorization over distinct terms of A050376.
%C A177334 This is obtained from the standard prime factor representation by splitting the exponents into a sum of powers of 2, and further factorization according to the nonzero term of this base-2 representation.
%C A177334 The largest factor of this representation of A000142(n) defines this sequence.
%D A177334 V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 [Russian].
%H A177334 Amiram Eldar, <a href="/A177334/b177334.txt">Table of n, a(n) for n = 2..1000</a>
%H A177334 S. Litsyn and V. S. Shevelev, <a href="http://www.emis.de/journals/INTEGERS/papers/h33/h33.Abstract.html">On factorization of integers with restrictions on the exponent</a>, INTEGERS: Electronic Journal of Combinatorial Number Theory, 7 (2007), #A33, 1-36.
%p A177334 A177334 := proc(n) local a,p,pow2 ; a := 1 ; for p in ifactors(n!)[2] do pow2 := convert( op(2,p),base,2) ; for j from 1 to nops(pow2) do if op(j,pow2) <> 0 then a := max(a,op(1,p)^(2^(j-1))) ; end if; end do: end do: return a ; end proc:
%p A177334 seq(A177334(n),n=2..60) ; # _R. J. Mathar_, Jun 16 2010
%t A177334 b[n_] :=2^(-1+Position[ Reverse@IntegerDigits[n, 2],_?(#==1&)])//Flatten; a[n_] := Module[{np = PrimePi[n]}, v=Table[0,{np}]; Do[p = Prime[k]; Do[v[[k]] += IntegerExponent[j, p], {j,2,n}],  {k,1,np}]; Max[(Prime/@Range[np])^(b/@v) // Flatten]]; Array[a, 38, 2]  (* _Amiram Eldar_, Sep 17 2019 *)
%Y A177334 Cf. A050376, A177329, A055460, A177333, A176525, A001358, A176509, A064380, A050292.
%K A177334 nonn
%O A177334 2,1
%A A177334 _Vladimir Shevelev_, May 06 2010
%E A177334 a(18) and a(19) corrected and sequence extended by _R. J. Mathar_, Jun 16 2010