cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177352 The triangle t(n,k) of the binomial sum as in A177351 in the column index range -floor(n/2)-1 <=k <= floor(n/2)-1.

This page as a plain text file.
%I A177352 #10 Jun 29 2025 21:41:28
%S A177352 1,1,2,2,1,3,3,2,5,5,5,4,1,8,8,8,7,3,13,13,13,13,12,7,1,21,21,21,21,
%T A177352 20,14,4,34,34,34,34,34,33,26,11,1,55,55,55,55,55,54,46,25,5,89,89,89,
%U A177352 89,89,89,88,79,51,16,1
%N A177352 The triangle t(n,k) of the binomial sum as in A177351 in the column index range -floor(n/2)-1 <=k <= floor(n/2)-1.
%C A177352 Row sums are 1, 1, 5, 8, 20, 34, 72, 122, 241, 405, 769, 1284, 2375, 3947, 7165,
%C A177352 11866, 21238, 35078, 62094, 102340, 179561,.... which apparently is (n+1)*Fibonacci(n+1)- A129722(n) for even n, and n*Fibonacci(n+1)-A129722(n) for odd n.
%C A177352 The first column is A000045 by construction. The change in the column index range adds the Fibonacci numbers as a first column and removes the trailing zero in the rows compared to A177351.
%C A177352 Comment _R. J. Mathar_, Dec 20 2010 (Start):
%C A177352 If we construct the complements of each row's entries with respect to the Fibonacci number of that row, an array
%C A177352 1;  # complement to 2
%C A177352 1,4;  # complement to 4,1
%C A177352 1,5   # complement to 7,3
%C A177352 1,6,12 # complement to 12,7,1
%C A177352 1,7,17 # complement to 20,14,4
%C A177352 1,8,23,33 # complement to 33,26,11,1
%C A177352 emerges which appears to be related to A038791. (End).
%e A177352 1
%e A177352 1;
%e A177352 2, 2, 1;
%e A177352 3, 3, 2;
%e A177352 5, 5, 5, 4, 1;
%e A177352 8, 8, 8, 7, 3;
%e A177352 13, 13, 13, 13, 12, 7, 1;
%e A177352 21, 21, 21, 21, 20, 14, 4;
%e A177352 34, 34, 34, 34, 34, 33, 26, 11, 1;
%e A177352 55, 55, 55, 55, 55, 54, 46, 25, 5;
%e A177352 89, 89, 89, 89, 89, 89, 88, 79, 51, 16, 1;
%t A177352 w[n_, m_, k_] = Binomial[n - (m + k), m + k];
%t A177352 t[n_, k_] := Sum[w[n, m, k], {m, 1, Floor[n/2 - k]}];
%t A177352 Table[Table[t[n, k], {k, -Floor[n/2 + 1], Floor[n/2 + 1] - 2}], {n, 0,
%t A177352    10}]
%t A177352 Flatten[%]
%Y A177352 Cf. A177351, A000045
%K A177352 nonn,tabf
%O A177352 0,3
%A A177352 _Roger L. Bagula_, Dec 10 2010