This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A177352 #10 Jun 29 2025 21:41:28 %S A177352 1,1,2,2,1,3,3,2,5,5,5,4,1,8,8,8,7,3,13,13,13,13,12,7,1,21,21,21,21, %T A177352 20,14,4,34,34,34,34,34,33,26,11,1,55,55,55,55,55,54,46,25,5,89,89,89, %U A177352 89,89,89,88,79,51,16,1 %N A177352 The triangle t(n,k) of the binomial sum as in A177351 in the column index range -floor(n/2)-1 <=k <= floor(n/2)-1. %C A177352 Row sums are 1, 1, 5, 8, 20, 34, 72, 122, 241, 405, 769, 1284, 2375, 3947, 7165, %C A177352 11866, 21238, 35078, 62094, 102340, 179561,.... which apparently is (n+1)*Fibonacci(n+1)- A129722(n) for even n, and n*Fibonacci(n+1)-A129722(n) for odd n. %C A177352 The first column is A000045 by construction. The change in the column index range adds the Fibonacci numbers as a first column and removes the trailing zero in the rows compared to A177351. %C A177352 Comment _R. J. Mathar_, Dec 20 2010 (Start): %C A177352 If we construct the complements of each row's entries with respect to the Fibonacci number of that row, an array %C A177352 1; # complement to 2 %C A177352 1,4; # complement to 4,1 %C A177352 1,5 # complement to 7,3 %C A177352 1,6,12 # complement to 12,7,1 %C A177352 1,7,17 # complement to 20,14,4 %C A177352 1,8,23,33 # complement to 33,26,11,1 %C A177352 emerges which appears to be related to A038791. (End). %e A177352 1 %e A177352 1; %e A177352 2, 2, 1; %e A177352 3, 3, 2; %e A177352 5, 5, 5, 4, 1; %e A177352 8, 8, 8, 7, 3; %e A177352 13, 13, 13, 13, 12, 7, 1; %e A177352 21, 21, 21, 21, 20, 14, 4; %e A177352 34, 34, 34, 34, 34, 33, 26, 11, 1; %e A177352 55, 55, 55, 55, 55, 54, 46, 25, 5; %e A177352 89, 89, 89, 89, 89, 89, 88, 79, 51, 16, 1; %t A177352 w[n_, m_, k_] = Binomial[n - (m + k), m + k]; %t A177352 t[n_, k_] := Sum[w[n, m, k], {m, 1, Floor[n/2 - k]}]; %t A177352 Table[Table[t[n, k], {k, -Floor[n/2 + 1], Floor[n/2 + 1] - 2}], {n, 0, %t A177352 10}] %t A177352 Flatten[%] %Y A177352 Cf. A177351, A000045 %K A177352 nonn,tabf %O A177352 0,3 %A A177352 _Roger L. Bagula_, Dec 10 2010