This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A177438 #12 Sep 08 2022 08:45:53 %S A177438 1,1,2,1,2,77,2,1,37,1,6,1,1,1,46,3,1,1,1,1,4,2,7,1,4,1,2,1,13,1,1,1, %T A177438 3,2,1,1,432,1,1,1,1,3,2,10,1,1,1,18,1,1700,1,1,5,2,9,4,4,1,1,2,1,3, %U A177438 27,1,1,2,1,1,1,4,3,1,2,2,5,1,32,1,11,1,2,52,10,4,1,1,10,1,1,2,23,1,3,7,12,1 %N A177438 Continued fraction for Pi - sqrt(2). %H A177438 G. C. Greubel, <a href="/A177438/b177438.txt">Table of n, a(n) for n = 0..10000</a> %p A177438 with(numtheory): cfrac(Pi-(sqrt(2)),100,'quotients'); # _Muniru A Asiru_, Sep 29 2018 %t A177438 ContinuedFraction[Pi-Sqrt[2],100] (* _Harvey P. Dale_, Nov 06 2011 *) %o A177438 (PARI) default(realprecision, 100); contfrac(Pi - sqrt(2)) \\ _G. C. Greubel_, Sep 29 2018 %o A177438 (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); ContinuedFraction(Pi(R) - Sqrt(2)); // _G. C. Greubel_, Sep 29 2018 %Y A177438 Cf. A177437 (decimal expansion of Pi-sqrt(2)), A001203 (continued fraction for Pi), A040000 (continued fraction expansion of sqrt(2)). %K A177438 cofr,nonn %O A177438 0,3 %A A177438 Earl Bellinger (ebelling(AT)oswego.edu), May 08 2010 %E A177438 Edited and extended by _Klaus Brockhaus_, May 09 2010