This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A177450 #9 Jul 10 2022 08:44:42 %S A177450 1,1,2,9,70,805,12480,245847,5909338,168310515,5556486450, %T A177450 209003251240,8835266400450,415094928861530,21473740362658640, %U A177450 1213683089969940075,74446121738526773490,4927385997649620215895,350145746700442604768346 %N A177450 G.f.: Sum_{n>=0} a(n)*x^n/(1+x)^(n^2+n) = 1+x. %H A177450 Alois P. Heinz, <a href="/A177450/b177450.txt">Table of n, a(n) for n = 0..356</a> %F A177450 G.f.: Sum_{n>=0} a(n)*x^n*(1-x)^(n^2) = 1/(1-x). %F A177450 G.f.: Sum_{n>=0} a(n)*x^n*C(-x)^(n^2+2n) = 1/C(-x) where C(x) is the Catalan function of A000108. %F A177450 a(n) = number of subpartitions of partition consisting of the first n square numbers starting with zero for n>0; e.g., a(4) = subp([0,1,4,9]) = 70. See A115728 for the definition of subpartitions. %e A177450 1+x = 1 + 1*x/(1+x)^2 + 2*x^2/(1+x)^6 + 9*x^3/(1+x)^12 + 70*x^4/(1+x)^20 + 805*x^5/(1+x)^30 +... %e A177450 1/(1-x) = 1 + 1*x*(1-x) + 2*x^2*(1-x)^4 + 9*x^3*(1-x)^9 + 70*x^4*(1-x)^16 + 805*x^5*(1-x)^25 +... %e A177450 Also forms the final terms in rows of the triangle where row n+1 equals the partial sums of row n with the final term repeated 2(n+1) times, starting with a '1' in row 0, as illustrated by: %e A177450 1; %e A177450 1, 1; %e A177450 1, 2, 2, 2, 2; %e A177450 1, 3, 5, 7, 9, 9, 9, 9, 9, 9; %e A177450 1, 4, 9, 16, 25, 34, 43, 52, 61, 70, 70, 70, 70, 70, 70, 70, 70; %e A177450 1, 5, 14, 30, 55, 89, 132, 184, 245, 315, 385, 455, 525, 595, 665, 735, 805, 805, 805, 805, 805, 805, 805, 805, 805, 805; %e A177450 ... %p A177450 a:= proc(n) option remember; `if`(n=0, 1, -add(a(j) %p A177450 *(-1)^(n-j)*binomial(1+ j^2, n-j), j=0..n-1)) %p A177450 end: %p A177450 seq(a(n), n=0..19); # _Alois P. Heinz_, Jul 08 2022 %o A177450 (PARI) {a(n)=local(F=1/(1+x+x*O(x^n)));polcoeff(1+x-sum(k=0,n-1,a(k)*x^k*F^(k*(k+1))),n)} %Y A177450 Cf. A107877, A177447, A177448, A177449, A209440. %K A177450 nonn %O A177450 0,3 %A A177450 _Paul D. Hanna_, May 09 2010