cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177484 The number of permutations having one non-overlapping occurrence of 122'1'.

Original entry on oeis.org

0, 0, 0, 0, 6, 54, 468, 3864, 32032, 269696, 2321536, 20798448, 193509888, 1897735488, 19460711424, 211113010752, 2395487617024, 28720852065280, 359273073631232, 4735262021189376, 64904470318448640, 934415802987420672, 13945275766952386560, 217951935041766097920
Offset: 0

Views

Author

Signy Olafsdottir (signy06(AT)ru.is), May 09 2010, May 14 2010

Keywords

Comments

The variable y is responsible for indicating if we want just one non-overlapping occurrence, and the variable x is responsible for the length of the permutation.

Examples

			a(4) = 6 because the only bad permutations are 1243, 1342, 1432, 2341, 2431, and 3421.
		

Programs

  • Mathematica
    CoefficientList[Series[(1/2 + 1/2*E^(x)*Cos[x] + 1/4*(1 + E^(2*x) + 2*E^(x)*Sin[x])*Tan[x]) * (1 + (x-1)*(1/2 + 1/2*E^(x)*Cos[x] + 1/4*(1 + E^(2*x) + 2*E^(x)*Sin[x])*Tan[x])), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Aug 25 2014 *)

Formula

E.g.f.: (1/2 + (1/4)*tan(x)*(1 + e^(2*x) + 2*e^x*sin(x)) + (1/2)*e^x*cos(x))/(1 - y*(1 + (x - 1)*(1/2 + (1/4)*tan(x)*(1 + e^(2*x) + 2*e^x*sin(x)) + (1/2)*e^x*cos(x)))).
E.g.f.: (1/2 + 1/2*exp(x)*cos(x) + 1/4*(1 + exp(2*x) + 2*exp(x)*sin(x)) * tan(x)) * (1 + (-1 + x)*(1/2 + 1/2*exp(x)*cos(x) + 1/4*(1 + exp(2*x) + 2*exp(x)*sin(x))*tan(x))). - Vaclav Kotesovec, Aug 25 2014
a(n) ~ n! * (exp(Pi) * (Pi - 2) * cosh(Pi/4)^4 - (-1)^n * exp(-Pi) * (Pi + 2) * sinh(Pi/4)^4) * 2^(n+1) * n / Pi^(n+2). - Vaclav Kotesovec, Aug 25 2014

Extensions

Offset and example corrected by Vaclav Kotesovec, Aug 24 2014
More terms from Vaclav Kotesovec, Aug 24 2014