This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A177501 #15 Nov 04 2019 02:21:38 %S A177501 1,1,1,1,2,1,3,2,3,2,5,2,6,4,4,5,8,4,9,4,6,6,11,4,10,8,10,7,14,6,15, %T A177501 11,10,12,12,8,18,12,13,10,20,8,21,12,15,16,23,13,21,16,19,15,26,15, %U A177501 21,15,21,22,29,13,30,26,21,24,25,18,33,21,25,19,35,18,36,26,24,23,31,19,39,23 %N A177501 The number of entries in row n of table A174625 which are multiples of n. %C A177501 n is prime iff a(n) = floor(n/2). %C A177501 For n >= 2, a(n) is the number of integers of the form binomial(n-k-1, k-1)/k, k=1..floor(n/2). - _Vladimir Shevelev_, Aug 18 2013 %H A177501 Peter J. C. Moses, <a href="/A177501/b177501.txt">Table of n, a(n) for n = 1..2000</a> %F A177501 For n >= 2, a(n) >= A000010(n)/2. Equality holds when n is odd prime. %e A177501 In the fifth row, 5 and 5 are both multiples of 5, so a(5)=2. %t A177501 p[0]:=0; p[1]:=2; p[n_]:=p[n]=Expand[p[n-1] +x p[n-2]+1]; Flatten[{1,Table[Count[CoefficientList[p[n]/(n+1) ,x],_Integer],{n,50}]}] (* _Peter J. C. Moses_, Aug 20 2013 *) %Y A177501 Cf. A174625, A221533. %K A177501 nonn %O A177501 1,5 %A A177501 _Vladimir Shevelev_, May 10 2010 %E A177501 Definition shortened, more terms added by _R. J. Mathar_, Nov 01 2010