A177505 Base 2i representation of n reinterpreted in base 4.
0, 1, 2, 3, 304, 305, 306, 307, 288, 289, 290, 291, 272, 273, 274, 275, 256, 257, 258, 259, 560, 561, 562, 563, 544, 545, 546, 547, 528, 529, 530, 531, 512, 513, 514, 515, 816, 817, 818, 819, 800, 801, 802, 803, 784, 785
Offset: 0
Examples
a(5) = 305 because 5 in base 2i is 10301 ( = (2i)^4 + 3 * (2i)^2 + (2i)^0), and (-4)^4 + 3 * (-4)^2 + (-4)^0 = 256 + 3 * 16 + 1 = 305.
References
- Donald Knuth, The Art of Computer Programming. Volume 2, 2nd Edition. Reading, Massachussetts: Addison-Wesley (1981): 189
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Donald Knuth, An imaginary number system, Communications of the ACM 3 (4), April 1960, pp. 245-247.
- OEIS Wiki, Quater-imaginary base
- Wikipedia, Quater-imaginary base
Crossrefs
Programs
-
Mathematica
(* First run the program from A039724 to define ToNegaBases *) Table[FromDigits[Riffle[IntegerDigits[ToNegaBases[n, 4]], 0], 4], {n, 0, 63}]
Formula
Conjectures from Colin Barker, Jul 16 2019: (Start)
G.f.: x*(1 + x + x^2 + 301*x^3 + x^4 + x^5 + x^6 - 19*x^7 + x^8 + x^9 + x^10 - 19*x^11 + x^12 + x^13 + x^14 - 19*x^15) / ((1 - x)^2*(1 + x)*(1 + x^2)*(1 + x^4)*(1 + x^8)).
a(n) = a(n-1) + a(n-16) - a(n-17) for n>16.
(End)
Comments