This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A177510 #53 May 15 2022 11:37:55 %S A177510 1,1,2,3,5,8,14,25,46,87,167,324,634,1248,2466,4887,9706,19308,38455, %T A177510 76659,152925,305232,609488,1217429,2432399,4860881,9715511,19421029, %U A177510 38826059,77626471,155211785,310357462,620608652,1241046343,2481817484,4963191718,9925669171,19850186856,39698516655,79394037319 %N A177510 Number of compositions (p0, p1, p2, ...) of n with pi - p0 <= i and pi >= p0. %C A177510 a(0)=1, otherwise row sums of A179748. %C A177510 For n>=1 cumulative sums of A008930. %C A177510 a(n) is proportional to A048651*A000079. The error (a(n)-A048651*A000079) divided by sequence A186425 tends to the golden ratio A001622. This can be seen when using about 1000 decimals of the constant A048651 = 0.2887880950866024212... - [_Mats Granvik_, Jan 01 2015] %C A177510 From _Gus Wiseman_, Mar 31 2022: (Start) %C A177510 Also the number of integer compositions of n with exactly one part on or above the diagonal. For example, the a(1) = 1 through a(5) = 8 compositions are: %C A177510 (1) (2) (3) (4) (5) %C A177510 (11) (21) (31) (41) %C A177510 (111) (112) (212) %C A177510 (211) (311) %C A177510 (1111) (1112) %C A177510 (1121) %C A177510 (2111) %C A177510 (11111) %C A177510 (End) %F A177510 G.f.: 1 + q/(1-q) * sum(n>=0, q^n * prod(k=1..n, (1-q^k)/(1-q) ) ). [_Joerg Arndt_, Mar 24 2014] %e A177510 From _Joerg Arndt_, Mar 24 2014: (Start) %e A177510 The a(7) = 25 such compositions are: %e A177510 01: [ 1 1 1 1 1 1 1 ] %e A177510 02: [ 1 1 1 1 1 2 ] %e A177510 03: [ 1 1 1 1 2 1 ] %e A177510 04: [ 1 1 1 1 3 ] %e A177510 05: [ 1 1 1 2 1 1 ] %e A177510 06: [ 1 1 1 2 2 ] %e A177510 07: [ 1 1 1 3 1 ] %e A177510 08: [ 1 1 1 4 ] %e A177510 09: [ 1 1 2 1 1 1 ] %e A177510 10: [ 1 1 2 1 2 ] %e A177510 11: [ 1 1 2 2 1 ] %e A177510 12: [ 1 1 2 3 ] %e A177510 13: [ 1 1 3 1 1 ] %e A177510 14: [ 1 1 3 2 ] %e A177510 15: [ 1 2 1 1 1 1 ] %e A177510 16: [ 1 2 1 1 2 ] %e A177510 17: [ 1 2 1 2 1 ] %e A177510 18: [ 1 2 1 3 ] %e A177510 19: [ 1 2 2 1 1 ] %e A177510 20: [ 1 2 2 2 ] %e A177510 21: [ 1 2 3 1 ] %e A177510 22: [ 2 2 3 ] %e A177510 23: [ 2 3 2 ] %e A177510 24: [ 3 4 ] %e A177510 25: [ 7 ] %e A177510 (End) %p A177510 A179748 := proc(n,k) option remember; if k= 1 then 1; elif k> n then 0 ; else add( procname(n-i,k-1),i=1..k-1) ; end if; end proc: %p A177510 A177510 := proc(n) add(A179748(n,k),k=1..n) ;end proc: %p A177510 seq(A177510(n),n=1..20) ; # _R. J. Mathar_, Dec 14 2010 %t A177510 Clear[t, nn]; nn = 39; t[n_, 1] = 1; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k - 1], {i, 1, k - 1}], 0]; Table[Sum[t[n, k], {k, 1, n}], {n, 1, nn}] (* _Mats Granvik_, Jan 01 2015 *) %t A177510 pdw[y_]:=Length[Select[Range[Length[y]],#<=y[[#]]&]]; Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],pdw[#]==1&]],{n,0,10}] (* _Gus Wiseman_, Mar 31 2022 *) %o A177510 (Sage) %o A177510 @CachedFunction %o A177510 def T(n, k): # A179748 %o A177510 if n == 0: return int(k==0); %o A177510 if k == 1: return int(n>=1); %o A177510 return sum( T(n-i, k-1) for i in [1..k-1] ); %o A177510 # to display triangle A179748 including column zero = [1,0,0,0,...]: %o A177510 #for n in [0..10]: print([ T(n,k) for k in [0..n] ]) %o A177510 def a(n): return sum( T(n,k) for k in [0..n] ) %o A177510 print([a(n) for n in [0..66]]) %o A177510 # _Joerg Arndt_, Mar 24 2014 %o A177510 (PARI) N=66; q='q+O('q^N); Vec( 1 + q/(1-q) * sum(n=0, N, q^n * prod(k=1, n, (1-q^k)/(1-q) ) ) ) \\ _Joerg Arndt_, Mar 24 2014 %Y A177510 Cf. A238859 (compositions with subdiagonal growth), A238876 (partitions with subdiagonal growth), A001227 (partitions into distinct parts with subdiagonal growth). %Y A177510 Cf. A238860 (partitions with superdiagonal growth), A238861 (compositions with superdiagonal growth), A000009 (partitions into distinct parts have superdiagonal growth by definition). %Y A177510 The version for partitions is A001477, strong A002620. %Y A177510 The version for permutations is A057427, strong A000295. %Y A177510 The opposite version is A238874, first column of A352522. %Y A177510 The version for fixed points is A240736, nonfixed A352520. %Y A177510 The strong version is A351983, column k=1 of A352524. %Y A177510 This is column k = 1 of A352525. %Y A177510 A238349 counts compositions by fixed points, first col A238351. %Y A177510 A352517 counts weak excedances of standard compositions. %Y A177510 Cf. A008930, A010054, A088218, A098825, A114088, A219282, A238352, A319005, A350839, A352488, A352489, A352514, A352515, A352516. %K A177510 nonn %O A177510 0,3 %A A177510 _Mats Granvik_, Dec 11 2010 %E A177510 New name and a(0) = 1 prepended, _Joerg Arndt_, Mar 24 2014