cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177523 Number of permutations of 1..n avoiding adjacent step pattern up, up, up, up.

This page as a plain text file.
%I A177523 #55 Oct 27 2023 21:38:51
%S A177523 1,1,2,6,24,119,709,4928,39144,349776,3472811,37928331,451891992,
%T A177523 5832672456,81074690424,1207441809209,19181203110129,323753459184738,
%U A177523 5785975294622694,109149016813544376,2167402030585724571,45190632809497874161,987099099863360190632
%N A177523 Number of permutations of 1..n avoiding adjacent step pattern up, up, up, up.
%C A177523 a(n) is the number of permutations of length n that avoid the consecutive pattern 12345 (or equivalently 54321).
%H A177523 Alois P. Heinz, <a href="/A177523/b177523.txt">Table of n, a(n) for n = 0..400</a> (terms n = 1..40 from Ray Chandler)
%H A177523 A. Baxter, B. Nakamura, and D. Zeilberger, <a href="http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/auto.html">Automatic generation of theorems and proofs on enumerating consecutive Wilf-classes</a>
%H A177523 Ira M. Gessel, Yan Zhuang, <a href="http://arxiv.org/abs/1408.1886">Counting permutations by alternating descents </a>, 2014. See displayed equation before Eq. (3), and set m=5. - _N. J. A. Sloane_, Aug 11 2014
%H A177523 Kaarel Hänni, <a href="https://arxiv.org/abs/2011.14360">Asymptotics of descent functions</a>, arXiv:2011.14360 [math.CO], Nov 29 2020, p. 14.
%H A177523 Mingjia Yang, Doron Zeilberger, <a href="https://arxiv.org/abs/1805.06077">Increasing Consecutive Patterns in Words</a>, arXiv:1805.06077 [math.CO], 2018.
%H A177523 Mingjia Yang, <a href="https://doi.org/10.7282/t3-d9z1-aw94">An experimental walk in patterns, partitions, and words</a>, Ph. D. Dissertation, Rutgers University (2020).
%F A177523 E.g.f.: 1/( Sum_{n>=0} x^(5*n)/(5*n)! - x^(5*n+1)/(5*n+1)! ).
%F A177523 a(n)/n! ~ c * (1/r)^n, where r = 1.007187547786015395418998654... is the root of the equation Sum_{n>=0} (r^(5*n)/(5*n)! - r^(5*n+1)/(5*n+1)!) = 0, c = 1.02806793756750152.... - _Vaclav Kotesovec_, Dec 11 2013
%F A177523 Equivalently, r = 1.00718754778601539541899865400272701484... is the root of the equation (5+sqrt(5)) * cos(sqrt((5-sqrt(5))/2)*r/2) + (5-sqrt(5)) * exp(sqrt(5)*r/2) * cos(sqrt((5+sqrt(5))/2)*r/2) - sqrt(2*(5-sqrt(5))) * sin(sqrt((5-sqrt(5))/2)*r/2) - sqrt(2*(5+sqrt(5))) * exp(sqrt(5)*r/2) * sin(sqrt((5+sqrt(5))/2)*r/2) = 0. - _Vaclav Kotesovec_, Aug 29 2014
%F A177523 E.g.f.: 10*exp((1+sqrt(5))*x/4) / ((5+sqrt(5)) * cos(sqrt((5-sqrt(5))/2)*x/2) + (5-sqrt(5)) * exp(sqrt(5)*x/2) * cos(sqrt((5+sqrt(5))/2)*x/2) - sqrt(2*(5-sqrt(5))) * sin(sqrt((5-sqrt(5))/2)*x/2) - sqrt(2*(5+sqrt(5))) * exp(sqrt(5)*x/2) * sin(sqrt((5+sqrt(5))/2)*x/2)). - _Vaclav Kotesovec_, Aug 29 2014
%F A177523 In closed form, c = 5*exp((1+sqrt(5))*r/4) / (r*((5 + sqrt(5)) * cos(sqrt((5 - sqrt(5))/2)*r/2) + (5 - sqrt(5)) * exp(sqrt(5)*r/2) * cos(sqrt((5 + sqrt(5))/2)*r/2))) = 1.0280679375675015201596831656779442465978511664638... . _Vaclav Kotesovec_, Feb 01 2015
%e A177523 E.g.f.: A(x) = 1 + x + 2*x^2/2! + 6*x^3/3! + 24*x^4/4! + 119*x^5/5! + 709*x^6/6! +...
%e A177523 where A(x) = 1/(1 - x + x^5/5! - x^6/6! + x^10/10! - x^11/11! + x^15/15! - x^16/16! + x^20/20! +...).
%t A177523 Table[n!*SeriesCoefficient[1/(Sum[x^(5*k)/(5*k)!-x^(5*k+1)/(5*k+1)!,{k,0,n}]),{x,0,n}],{n,0,20}] (* _Vaclav Kotesovec_, Dec 11 2013 *)
%t A177523 FullSimplify[CoefficientList[Series[10*E^((1+Sqrt[5])*x/4) / ((5+Sqrt[5]) * Cos[Sqrt[(5-Sqrt[5])/2]*x/2] + (5-Sqrt[5]) * E^(Sqrt[5]*x/2) * Cos[Sqrt[(5+Sqrt[5])/2]*x/2] - Sqrt[2*(5-Sqrt[5])] * Sin[Sqrt[(5-Sqrt[5])/2]*x/2] - Sqrt[2*(5+Sqrt[5])] * E^(Sqrt[5]*x/2) * Sin[Sqrt[(5+Sqrt[5])/2]*x/2]),{x,0,20}],x]*Range[0,20]!] (* _Vaclav Kotesovec_, Aug 29 2014 *)
%o A177523 (PARI) {a(n)=n!*polcoeff(1/sum(m=0, n\5+1, x^(5*m)/(5*m)!-x^(5*m+1)/(5*m+1)!+x^2*O(x^n)), n)}
%Y A177523 Cf. A080635, A049774, A117158, A177533.
%Y A177523 Column k=15 of A242784.
%K A177523 nonn
%O A177523 0,3
%A A177523 _R. H. Hardin_, May 10 2010
%E A177523 More terms from _Ray Chandler_, Dec 06 2011
%E A177523 a(0)=1 prepended by _Alois P. Heinz_, Jan 13 2015