cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177533 Number of permutations of 1..n avoiding adjacent step pattern up, up, up, up, up.

This page as a plain text file.
%I A177533 #46 Aug 08 2018 17:54:11
%S A177533 1,1,2,6,24,120,719,5027,40168,361080,3606480,39623760,474915803,
%T A177533 6166512899,86227808578,1291868401830,20645144452320,350547210173280,
%U A177533 6302294420371031,119600213982762899,2389140113204434900,50111866901959213980,1101140993932295832120
%N A177533 Number of permutations of 1..n avoiding adjacent step pattern up, up, up, up, up.
%C A177533 a(n) is the number of permutations of length n that avoid the consecutive pattern 123456 (or equivalently 654321).
%H A177533 Alois P. Heinz, <a href="/A177533/b177533.txt">Table of n, a(n) for n = 0..450</a> (terms n = 1..30 from Ray Chandler)
%H A177533 R. E. L. Aldred, M. D. Atkinson, D. J. McCaughan, <a href="https://doi.org/10.1016/j.aam.2010.03.005">Avoiding consecutive patterns in permutations</a> Adv. in Appl. Math., 45(3), 449-461, 2010.
%H A177533 A. Baxter, B. Nakamura, and D. Zeilberger, <a href="http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/auto.html">Automatic generation of theorems and proofs on enumerating consecutive Wilf-classes</a>
%H A177533 Ira M. Gessel, Yan Zhuang, <a href="http://arxiv.org/abs/1408.1886">Counting permutations by alternating descents </a>, arXiv:1408.1886 [math.CO], 2014. See displayed equation before Eq. (3), and set m=6. - _N. J. A. Sloane_, Aug 11 2014
%H A177533 Mingjia Yang, Doron Zeilberger, <a href="https://arxiv.org/abs/1805.06077">Increasing Consecutive Patterns in Words</a>, arXiv:1805.06077 [math.CO], 2018.
%F A177533 a(n)/n! ~ 1.005827831279392186... * (1/r)^n, where r = 1.0011988273240623031887... is the root of the equation Sum_{n>=0} (r^(6*n)/(6*n)! - r^(6*n+1)/(6*n+1)!) = 0. - _Vaclav Kotesovec_, Dec 11 2013
%F A177533 Equivalently, a(n)/n! ~ c * (1/r)^n, where r = 1.00119882732406230318870210972855430833421618931012450844128... is the root of the equation 2 + exp(r/2) * (3 + exp(r)) * cos(sqrt(3)*r/2) = 2 * sqrt(3) * exp(r) * cosh(r/2) * sin(sqrt(3)*r/2), c = sqrt(3) / (2 * r * cosh(r/2) * sin(sqrt(3)*r/2)) = 1.0058278312793921866941324506580803251270892126827302878865925027445... . - _Vaclav Kotesovec_, Aug 23 2014
%F A177533 E.g.f. (Aldred, Atkinson, McCaughan, 2010): 3/(exp(x/2) * cos(x*sqrt(3)/2+Pi/3) + sqrt(3) * exp(-x/2) * cos(x*sqrt(3)/2+Pi/6) + exp(-x)). - _Vaclav Kotesovec_, Aug 23 2014
%p A177533 b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
%p A177533       `if`(t<4, add(b(u+j-1, o-j, t+1), j=1..o), 0)+
%p A177533       add(b(u-j, o+j-1, 0), j=1..u))
%p A177533     end:
%p A177533 a:= n-> b(n, 0, 0):
%p A177533 seq(a(n), n=0..30);  # _Alois P. Heinz_, Oct 07 2013
%t A177533 Table[n!*SeriesCoefficient[1/(Sum[x^(6*k)/(6*k)!-x^(6*k+1)/(6*k+1)!,{k,0,n}]),{x,0,n}],{n,1,20}] (* _Vaclav Kotesovec_, Dec 11 2013 *)
%t A177533 Rest[CoefficientList[Series[3/(E^(x/2) * Cos[x*Sqrt[3]/2+Pi/3] + Sqrt[3] * E^(-x/2) * Cos[x*Sqrt[3]/2+Pi/6] + E^(-x)),{x,0,20}],x] * Range[0,20]!] (* _Vaclav Kotesovec_, Aug 23 2014 *)
%Y A177533 Cf. A049774, A117158, A177523.
%Y A177533 Column k=31 of A242784.
%K A177533 nonn
%O A177533 0,3
%A A177533 _R. H. Hardin_, May 10 2010
%E A177533 More terms from _Ray Chandler_, Dec 06 2011
%E A177533 Minor edits by _Vaclav Kotesovec_, Aug 29 2014
%E A177533 a(0)=1 prepended by _Alois P. Heinz_, Aug 08 2018