cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177553 Number of permutations of 1..n avoiding adjacent step pattern up, up, up, up, up, up.

This page as a plain text file.
%I A177553 #31 Mar 11 2021 17:30:00
%S A177553 1,1,2,6,24,120,720,5039,40305,362682,3626190,39881160,478490760,
%T A177553 6219298800,87055051511,1305598835941,20885951018102,354999461960226,
%U A177553 6388879812001704,121367620532150280,2426930566055020080,50956684690331669759,1120852238721212726609
%N A177553 Number of permutations of 1..n avoiding adjacent step pattern up, up, up, up, up, up.
%H A177553 Alois P. Heinz, <a href="/A177553/b177553.txt">Table of n, a(n) for n = 0..450</a>
%H A177553 Mingjia Yang, Doron Zeilberger, <a href="https://arxiv.org/abs/1805.06077">Increasing Consecutive Patterns in Words</a>, arXiv:1805.06077 [math.CO], 2018.
%H A177553 Mingjia Yang, <a href="https://doi.org/10.7282/t3-d9z1-aw94">An experimental walk in patterns, partitions, and words</a>, Ph. D. Dissertation, Rutgers University (2020).
%F A177553 a(n)/n! ~ c * (1/r)^n, where r = 1.0001738181531504504518260962714687775785823593018886... is the root of the equation Sum_{n>=0} (r^(7*n)/(7*n)! - r^(7*n+1)/(7*n+1)!) = 0, c = 1.0010191104259450282450770594076722424772755532278.... - _Vaclav Kotesovec_, Aug 29 2014
%F A177553 E.g.f.: -(7/(2*((-cos(x*cos(3*Pi/14)))*cosh(x*sin(3*Pi/14)) + cos(x*cos(3*Pi/14))*cosh(x*sin(3*Pi/14))* sin(3*Pi/14) - cosh(x*sin(Pi/14))* (cos(x*cos(Pi/14))*(1 + sin(Pi/14)) - cos(Pi/14)*sin(x*cos(Pi/14))) + cos(3*Pi/14)*cosh(x*sin(3*Pi/14))* sin(x*cos(3*Pi/14)) - cosh(x*cos(Pi/7))* ((1 + cos(Pi/7))*cos(x*sin(Pi/7)) - sin(Pi/7)*sin(x*sin(Pi/7))) + cos(x*sin(Pi/7))* sinh(x*cos(Pi/7)) + cos(Pi/7)*cos(x*sin(Pi/7))* sinh(x*cos(Pi/7)) - sin(Pi/7)*sin(x*sin(Pi/7))* sinh(x*cos(Pi/7)) + cos(x*cos(Pi/14))* sinh(x*sin(Pi/14)) + cos(x*cos(Pi/14))*sin(Pi/14)* sinh(x*sin(Pi/14)) - cos(Pi/14)*sin(x*cos(Pi/14))* sinh(x*sin(Pi/14)) - cos(x*cos(3*Pi/14))* sinh(x*sin(3*Pi/14)) + cos(x*cos(3*Pi/14))* sin(3*Pi/14)*sinh(x*sin(3*Pi/14)) + cos(3*Pi/14)*sin(x*cos(3*Pi/14))* sinh(x*sin(3*Pi/14))))). - _Vaclav Kotesovec_, Jan 31 2015
%F A177553 In closed form, c = 7 / (r * (2*cos(r*sin(Pi/7))*cosh(r*cos(Pi/7)) + cos(Pi/7 - r*sin(Pi/7)) * cosh(r*cos(Pi/7)) + cos(Pi/7 - r*sin(Pi/7)) * cosh(r*cos(Pi/7)) + 2*cos(r*cos(Pi/14)) * cosh(r*sin(Pi/14)) + 2*cos(r*cos(3*Pi/14)) * cosh(r*sin(3*Pi/14)) + 2*cosh(r*sin(Pi/14)) * sin(Pi/14 + r*cos(Pi/14)) - 2*cosh(r*sin(3*Pi/14)) * sin(3*Pi/14 - r*cos(3*Pi/14)) - 2*cos(r*sin(Pi/7)) * sinh(r*cos(Pi/7)) - cos(Pi/7 - r*sin(Pi/7)) * sinh(r*cos(Pi/7)) - cos(Pi/7 - r*sin(Pi/7)) * sinh(r*cos(Pi/7)) - 2*cos(r*cos(Pi/14)) * sinh(r*sin(Pi/14)) - 2*sin(Pi/14 + r*cos(Pi/14))*sinh(r*sin(Pi/14)) + 2*cos(r*cos(3*Pi/14)) * sinh(r*sin(3*Pi/14)) - 2*sin((3*Pi)/14 - r*cos(3*Pi/14)) * sinh(r*sin(3*Pi/14)))). - _Vaclav Kotesovec_, Feb 01 2015
%p A177553 b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
%p A177553       `if`(t<5, add(b(u+j-1, o-j, t+1), j=1..o), 0)+
%p A177553       add(b(u-j, o+j-1, 0), j=1..u))
%p A177553     end:
%p A177553 a:= n-> b(n, 0, 0):
%p A177553 seq(a(n), n=0..30);  # _Alois P. Heinz_, Oct 07 2013
%t A177553 nn=20;r=6;a=Apply[Plus,Table[Normal[Series[y x^(r+1)/(1-Sum[y x^i,{i,1,r}]),{x,0,nn}]][[n]]/(n+r)!,{n,1,nn-r}]]/.y->-1;Range[0,nn]! CoefficientList[Series[1/(1-x-a),{x,0,nn}],x] (* _Geoffrey Critzer_, Feb 25 2014 *)
%t A177553 Table[n!*SeriesCoefficient[1/(Sum[x^(7*k)/(7*k)!-x^(7*k+1)/(7*k+1)!,{k,0,n}]),{x,0,n}],{n,1,20}] (* _Vaclav Kotesovec_, Aug 29 2014 *)
%Y A177553 Column k=63 of A242784.
%Y A177553 Cf. A080635, A049774, A117158, A177533, A177523.
%K A177553 nonn
%O A177553 0,3
%A A177553 _R. H. Hardin_, May 10 2010
%E A177553 a(18)-a(22) from _Alois P. Heinz_, Oct 07 2013
%E A177553 a(0)=1 prepended by _Alois P. Heinz_, Aug 08 2018