This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A177702 #26 Dec 12 2023 07:41:54 %S A177702 1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1, %T A177702 1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1, %U A177702 2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2,1,1,2 %N A177702 Period 3: repeat [1, 1, 2]. %C A177702 Continued fraction expansion of (2+sqrt(10))/3. %C A177702 Decimal expansion of 112/999. %C A177702 a(n) = A131534(n+2) = |A132419(n)| = |A132367(n)| = |A131556(n+2)|= |A122876(n)|. %H A177702 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,1). %F A177702 a(n) = a(n-3) for n > 2, with a(0) = 1, a(1) = 1, a(2) = 2. %F A177702 G.f.: (1+x+2*x^2)/(1-x^3). %F A177702 a(n) = 4/3 - cos(2*Pi*n/3)/3 - sin(2*Pi*n/3)/sqrt(3). - _R. J. Mathar_, Oct 08 2011 %F A177702 a(n) = 1 + A022003(n). - _Wesley Ivan Hurt_, Jul 01 2016 %p A177702 seq(op([1, 1, 2]), n=1..50); # _Wesley Ivan Hurt_, Jul 01 2016 %t A177702 PadRight[{},120,{1,1,2}] (* or *) LinearRecurrence[{0,0,1},{1,1,2},120] (* _Harvey P. Dale_, Dec 19 2014 *) %o A177702 (Magma) &cat[ [1, 1, 2]: k in [1..35] ]; %o A177702 (PARI) a(n)=max(n%3,1) \\ _Charles R Greathouse IV_, Jul 17 2016 %Y A177702 Cf. A022003, A131534, A177703. %K A177702 cofr,nonn,easy %O A177702 0,3 %A A177702 _Klaus Brockhaus_, May 11 2010