This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A177704 #44 Mar 21 2023 15:41:18 %S A177704 1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1, %T A177704 1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2, %U A177704 1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1,1,1,2,1 %N A177704 Period 4: repeat [1, 1, 1, 2]. %C A177704 Continued fraction expansion of (3 + 2*sqrt(6))/5. %C A177704 Decimal expansion of 1112/9999. %C A177704 a(n) = A164115(n + 1) = (-1)^(n + 1) * A164117(n + 1) = A138191(n + 3) = A107453(n + 5). %H A177704 Vincenzo Librandi, <a href="/A177704/b177704.txt">Table of n, a(n) for n = 0..1000</a> %H A177704 David Nacin, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL26/Nacin/nacin5.html">Van der Laan Sequences and a Conjecture on Padovan Numbers</a>, J. Int. Seq., Vol. 26 (2023), Article 23.1.2. %H A177704 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,1). %F A177704 a(n) = (5-(-1)^n + i*i^n-i*(-i)^n)/4 where i = sqrt(-1). %F A177704 a(n) = a(n-4) for n > 3; a(0) = 1, a(1) = 1, a(2) = 1, a(3) = 2. %F A177704 G.f.: (1+x+x^2+2*x^3)/(1-x^4). %F A177704 a(n) = 1 + (1-(-1)^n) * (1+i^(n+1))/4 where i = sqrt(-1). - _Bruno Berselli_, Apr 05 2011 %F A177704 a(n) = 5/4 - sin(Pi*n/2)/2 - (-1)^n/4. - _R. J. Mathar_, Oct 08 2011 %F A177704 a(n) = floor((n+1)*5/4) - floor(n*5/4). - _Hailey R. Olafson_, Jul 23 2014 %F A177704 From _Wesley Ivan Hurt_, Jun 15 2016: (Start) %F A177704 a(n+3) - a(n+2) = A219977(n). %F A177704 Sum_{i=0..n-1} a(i) = A001068(n). (End) %F A177704 E.g.f.: (-sin(x) + 3*sinh(x) + 2*cosh(x))/2. - _Ilya Gutkovskiy_, Jun 15 2016 %p A177704 A177704:=n->floor((n+1)*5/4) - floor(n*5/4): seq(A177704(n), n=0..100); # _Wesley Ivan Hurt_, Jun 15 2016 %t A177704 Table[Floor[(n + 1)*5/4] - Floor[n*5/4], {n, 0, 100}] (* _Wesley Ivan Hurt_, Jun 15 2016 *) %t A177704 LinearRecurrence[{0, 0, 0, 1}, {1, 1, 1, 2}, 100] (* _Vincenzo Librandi_, Jun 16 2016 *) %o A177704 (Magma) &cat[ [1, 1, 1, 2]: k in [1..27] ]; %o A177704 (PARI) a(n) = if(n%4==3, 2, 1) \\ _Felix Fröhlich_, Jun 15 2016 %Y A177704 Cf. A001068, A107453, A138191, A164115, A164117, A177705, A219977, A236398. %K A177704 nonn,cofr,easy %O A177704 0,4 %A A177704 _Klaus Brockhaus_, May 11 2010