cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177762 Beta polynomials (coefficients in descending order, triangle read by rows).

This page as a plain text file.
%I A177762 #12 Jun 02 2025 02:55:58
%S A177762 1,1,1,-1,1,-2,-2,1,-3,-3,5,1,-4,-4,16,16,1,-5,-5,35,35,-61,1,-6,-6,
%T A177762 64,64,-272,-272,1,-7,-7,105,105,-791,-791,1385,1,-8,-8,160,160,-1856,
%U A177762 -1856,7936,7936,1,-9,-9,231,231,-3801,-3801,28839,28839,-50521
%N A177762 Beta polynomials (coefficients in descending order, triangle read by rows).
%C A177762 beta_n(x) = sum_{k=0..n-1} C(n,k)b(-k)(z-1)^(n-k-1) for n > 0 and beta_0(x)=1. Here b(s) = 2*4^(-s)(zeta(s,1/4)-zeta(s,3/4)) where zeta(s,t) denotes the Hurwitz zeta function.
%C A177762 beta_n(0) are the signed Euler numbers 1,1,-1,-2,5,16,-61,... The sign pattern is the same as in the egf. tanh + sech.
%H A177762 Peter Luschny, Swiss-Knife polynomials and Euler numbers, <a href="http://www.oeis.org/wiki/User:Peter_Luschny/SwissKnifePolynomials">Blog on OEIS</a>
%H A177762 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DirichletBetaFunction.html">Dirichlet Beta Function</a>
%e A177762 1
%e A177762 1
%e A177762 z - 1
%e A177762 z^2 - 2 z - 2
%e A177762 z^3 - 3 z^2 - 3 z + 5
%e A177762 z^4 - 4 z^3 - 4 z^2 + 16 z + 16
%e A177762 z^5 - 5 z^4 - 5 z^3 + 35 z^2 + 35 z - 61
%p A177762 beta := proc(n, z) option remember; local k;
%p A177762 if n = 0 then 1 else add(`if`(k mod 2 = 1, 0,
%p A177762 binomial(n,k)*beta(k,0)*(z-1)^(n-k-1)),k=0..n-1) fi end:
%t A177762 beta[n_, z_] := beta[n, z] = If[n == 0, 1, Sum[If[OddQ[k], 0, Binomial[n, k]*beta[k, 0]*(z-1)^(n-k-1)], {k, 0, n-1}]];
%t A177762 Table[CoefficientList[beta[n, z], z] // Reverse, {n, 0, 10}] (* _Jean-François Alcover_, Jun 17 2019, from Maple *)
%Y A177762 Cf. A000111.
%K A177762 easy,sign,tabf
%O A177762 0,6
%A A177762 _Peter Luschny_, May 13 2010