This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A177780 #10 Nov 03 2019 09:07:11 %S A177780 1,4,60,2496,276240,83893248,72508524480,182341191057408, %T A177780 1348995112077074688,29528107099434111467520, %U A177780 1918583757808453356238126080,370812729559366641806998574727168 %N A177780 E.g.f. satisfies: L(x) = x*Sum_{n>=0} (2^n/n!)*Product_{k=0..n-1} L(3^k*x). %C A177780 More generally, we have the following conjecture. %C A177780 Define the series E(,) and L(,) by: %C A177780 E(x,q) = Sum_{n>=0} q^(n(n-1)/2)*x^n/n!, %C A177780 L(x,q) = x*d/dx log(E(x,q)) = x*E'(x,q)/E(x,q), %C A177780 then L(x,q) satisfies: %C A177780 L(x,q) = x*Sum_{n>=0} (q-1)^n/n! * Product_{k=0..n-1} L(q^k*x,q), %C A177780 1/E(x,q) = Sum_{n>=0} (-1)^n/n! * Product_{k=0..n-1} L(q^k*x,q). %F A177780 a(n) = n*A054941(n), where A054941(n) is the number of connected oriented graphs on n nodes. %F A177780 Define the series E(x) and L(x) by: %F A177780 E(x) = Sum_{n>=0} 3^(n(n-1)/2)*x^n/n!, %F A177780 L(x) = x*d/dx log(E(x)) = x*E'(x)/E(x), %F A177780 then L(x) satisfies: %F A177780 L(x) = x*Sum_{n>=0} 2^n/n! * Product_{k=0..n-1} L(3^k*x), %F A177780 1/E(x) = Sum_{n>=0} (-1)^n/n! * Product_{k=0..n-1} L(3^k*x). %e A177780 E.g.f.: L(x) = x + 4*x^2/2! + 60*x^3/3! + 2496*x^4/4! + 276240*x^5/5! + ... + n*A054941(n)*x^n/n! + ... %e A177780 Given the related expansions: %e A177780 E(x) = 1 + x + 3*x^2/2! + 27*x^3/3! + 729*x^4/4! + 59049*x^5/5! + ... %e A177780 log(E(x)) = x + 2*x^2/2! + 20*x^3/3! + 624*x^4/4! + 55248*x^5/5! + ... + A054941(n)*x^n/n! + ... %e A177780 then L(x) satisfies: %e A177780 L(x)/x = 1 + 2*L(x) + 2^2*L(x)L(3x)/2! + 2^3*L(x)L(3x)L(9x)/3! + 2^4*L(x)L(3x)L(9x)L(27x)/4! + ... %e A177780 1/E(x) = 1 - L(x) + L(x)L(3x)/2! - L(x)L(3x)L(9x)/3! + L(x)L(3x)L(9x)L(27x)/4! -+ ... %t A177780 m = 13; A[_] = 0; Do[A[x_] = x Sum[2^n/n! Product[A[3^k x], {k, 0, n-1}], {n, 0, m}] + O[x]^m // Normal, {m}]; CoefficientList[A[x]/x, x] * Range[1, m-1]! (* _Jean-François Alcover_, Nov 03 2019 *) %o A177780 (PARI) {a(n,q=3)=local(Lq=x+x^2);for(i=1,n,Lq=x*sum(m=0,n,(q-1)^m/m!*prod(k=0,m-1,subst(Lq,x,q^k*x+x*O(x^n)))));n!*polcoeff(Lq,n)} %Y A177780 Cf. A054941, A177779, A177777, A177781. %K A177780 nonn %O A177780 1,2 %A A177780 _Paul D. Hanna_, May 20 2010