This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A177793 #4 Mar 30 2012 18:40:52 %S A177793 1,3,9,111,8659,4220403,8594777715,70377477369459,2305913405481561715, %T A177793 302233760834929839713907,158456627262298939528655810163, %U A177793 332307157402856267706609817833582195 %N A177793 Partial sums of A054247. %C A177793 Partial sums of number of n X n binary matrices under action of dihedral group of the square D_4. Can this ever be prime? %F A177793 a(n) = SUM[i=0..n] A054247(i) = SUM[i=0..n] [(1/8)*(2^(i^2)+2*2^(i^2/4)+3*2^(i^2/2)+2*2^((i^2+i)/2)) if i is even and (1/8)*(2^(i^2)+2*2^((i^2+3)/4)+2^((i^2+1)/2)+4*2^((i^2+i)/2)) if i is odd]. %e A177793 a(4) = 1 + 2 + 6 + 102 + 8548 = 8659 = 7 * 1237. %o A177793 Contribution from _R. J. Mathar_, May 28 2010: (Start) %o A177793 (PARI) A054247(n)={ local(a) ; if(n%2==0, a=2^(n^2)+2*2^(n^2/4)+3*2^(n^2/2)+2*2^((n^2+n)/2), a=2^(n^2)+2*2^((n^2+3)/4)+2^((n^2+1)/2)+4*2^((n^2+n)/2); ) ; return(a/8) ; } %o A177793 A177793(n)={ return(sum(i=0,n,A054247(i))) ; } %o A177793 { for(n=0,20, print1(A177793(n),",") ; ) ; } (End) %Y A177793 Cf. A002724, A054247, A054407. %K A177793 easy,nonn %O A177793 0,2 %A A177793 _Jonathan Vos Post_, May 13 2010 %E A177793 Extended by _R. J. Mathar_, May 28 2010