This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A177797 #39 Apr 16 2023 03:11:30 %S A177797 0,0,1,5,31,239,2233,24725,318631,4707359,78691633,1471482725, %T A177797 30469552111,692488851599,17141242421353,459033875802485, %U A177797 13221994489388791,407574126219013439,13386292717807416673,466636446695213384645,17205919477720642772671,669019022588385113932079,27357684052927560953626393 %N A177797 Number of decomposable fixed-point free involutions, also the number of disconnected chord diagrams with 2n nodes on an open string. %C A177797 Line up 2n distinguishable nodes sequentially on an open string. Connect each two nodes with only one chord, there will be a (2n-1)!! variety of chord diagrams. Amongst this variety, we can classify a diagram as disconnected when it is possible to find a node index 2s with all nodes <=2s in group A and the rest in group B where none of the chords connect nodes between group A and B. %C A177797 The subsequence of primes begins 5, 31, 239, 4707359, 78691633, 17141242421353, no more through a(22). - _Jonathan Vos Post_, Jan 31 2011 %H A177797 Alois P. Heinz, <a href="/A177797/b177797.txt">Table of n, a(n) for n = 0..200</a> %H A177797 A. King, <a href="http://dx.doi.org/10.1016/j.disc.2006.01.005">Generating indecomposable permutations</a>, Discrete Math., 306 (2006), 508-518. %H A177797 F. Kuehnel, L. P. Pryadko, M. I. Dykman, <a href="http://dx.doi.org/10.1103/PhysRevB.63.165326">Single-electron magnetoconductivity of nondegenerate two-dimensional electron system in a quantizing magnetic field</a>, Phys. Rev. B Vol. 63, 16 (2001). %H A177797 Frank Kuehnel, Leonid P. Pryadko and M. I. Dykman, <a href="http://arxiv.org/abs/cond-mat/0008416">Single electron magneto-conductivity of a nondegenerate 2D electron system in a quantizing magnetic field</a> (See diagrams on page 6), arXiv:cond-mat/0008416 [cond-mat.str-el], 2000. %t A177797 (* derived from _Joerg Arndt_'s PARI code *) %t A177797 f[n_] := f[n] = (2n-1)!! %t A177797 s[n_] := s[n] = f[n] - Sum[f[k] s[n - k], {k, 1, n - 1}] %t A177797 Table[f[k] - s[k], {k, 0, 22}] %t A177797 (* original brute force method *) %t A177797 GenerateDiagramsOfOrder[n_Integer /; n >= 0] := Diagrams[Range[2 n]] %t A177797 Diagrams[pool_List] := Block[{n = Count[pool, _]}, If[n <= 2, {{pool}}, %t A177797 Flatten[Map[ %t A177797 Flatten[ %t A177797 Outer[Join, {{{pool[[1]], pool[[#]]}}}, %t A177797 Diagrams[ %t A177797 Function[{poolset, droppos}, %t A177797 Drop[poolset, {droppos}] // Rest][pool, #]], 1], 1] &, %t A177797 Range[2, n]], 1]]] %t A177797 SelectDisconnected[diagrams_List] := Select[diagrams, IsDisconnected] %t A177797 IsDisconnected[{{}}] = False; %t A177797 IsDisconnected[pairs_List] := %t A177797 Block[{newPairs=Map[#~Append~(#[[2]] - #[[1]]) &, pairs], %t A177797 distanceList}, %t A177797 distanceList = Fold[ %t A177797 ReplacePart[#1, {#2[[1]] -> #2[[3]], #2[[2]] -> -#2[[3]]}] &, %t A177797 Range[2 Length[pairs]], %t A177797 newPairs]; %t A177797 Return[Length[Select[Drop[Accumulate[distanceList], -1], #<1 &]] > 0] %t A177797 ] %t A177797 Map[Length[SelectDisconnected[GenerateDiagramsOfOrder[#]]]&, Range[0,7]] %o A177797 (PARI) %o A177797 f(n)=(2*n)!/n!/2^n; \\ == (2n-1)!! %o A177797 s(n)=f(n) - sum(k=1, n-1, f(k)*s(n-k) ) %o A177797 a(n)=f(n)-s(n) %o A177797 \\ _Joerg Arndt_ %o A177797 (Python) %o A177797 from functools import cache %o A177797 def a(n): %o A177797 @cache %o A177797 def h(n): %o A177797 if n <= 1: return 1 %o A177797 return h(n - 1) * (2 * n - 1) %o A177797 @cache %o A177797 def c(n): %o A177797 if n == 0: return 1 %o A177797 return h(n) - sum(h(k) * c(n - k) for k in range(1, n)) %o A177797 return h(n) - c(n) %o A177797 print([a(n) for n in range(19)]) # _Peter Luschny_, Apr 16 2023 %Y A177797 Chord Diagrams: A054499, A007769. %Y A177797 Permutations: A001147, A000698, A003319. - _Joerg Arndt_ %Y A177797 Cf. A000637. - _Jonathan Vos Post_ %K A177797 nonn,easy %O A177797 0,4 %A A177797 _Frank Kuehnel_, Dec 27 2010