cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177869 Integers divisible by their number of digits in binary.

Original entry on oeis.org

1, 2, 6, 8, 12, 20, 25, 30, 36, 42, 48, 54, 60, 70, 77, 84, 91, 98, 105, 112, 119, 126, 128, 136, 144, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 261, 270, 279, 288, 297, 306, 315, 324, 333, 342, 351, 360, 369, 378, 387, 396, 405
Offset: 1

Views

Author

Grant Garcia, Dec 13 2010

Keywords

Examples

			105 is 1101001 in base 2 (length of 7); 105 / 7 is 15.
		

Crossrefs

Base 10 equivalent is A098952.

Programs

  • Haskell
    base_weight b g n | n == 0 = 0 | otherwise = (base_weight b g (n `div` b)) + (g $ n `mod` b)
    interesting b g = filter f [1..] where f n = n `mod` (base_weight b g n) == 0
    bin_interesting g = interesting 2 g
    weights l n | (n >=0) && ((length l) > fromInteger n) = l !! fromInteger n | otherwise = 0
    cnst = weights [1, 1]
    let sequence = bin_interesting cnst -- Victor S. Miller, Oct 17 2011
    
  • Mathematica
    Select[Range[410], IntegerQ[#/Length[IntegerDigits[#, 2]]] &] (* Alonso del Arte, Dec 13 2010 *)
  • PARI
    for(d=1, 9, forstep(n=(2^(d-1)+d-1)\d*d, 2^d-1, d, print1(n", "))) \\ Charles R Greathouse IV, Oct 17 2011
  • Python
    import math
    for n in range(1, 1000):
        if not n % int(math.log(n, 2) + 1): print(n) # Garcia