cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177886 The number of isomorphism classes of Latin quandles (a.k.a. left distributive quasigroups) of order n.

This page as a plain text file.
%I A177886 #36 Dec 26 2021 21:09:00
%S A177886 1,0,1,1,3,0,5,2,8,0,9,1,11,0,5,9,15,0,17,3,7,0,21,2,34,0,62,7,27,0,
%T A177886 29,8,11,0,15,9,35,0,13,6,39,0,41,9,36,0,45
%N A177886 The number of isomorphism classes of Latin quandles (a.k.a. left distributive quasigroups) of order n.
%C A177886 A quandle is Latin if its multiplication table is a Latin square.  A Latin quandle may be described as a left (or right) distributive quasigroup. Sherman Stein (see reference below) proved that a left distributive quasigroup of order n exists if and only if n is not of the form 4k + 2.
%H A177886 W. E. Clark, M. Elhamdadi, M. Saito, T. Yeatman, <a href="http://arxiv.org/abs/1312.3307">Quandle Colorings of Knots and Applications</a>, arXiv preprint arXiv:1312.3307, 2013
%H A177886 G. Ehrman, A. Gurpinar, M. Thibault, D. Yetter, <a href="http://www.math.ksu.edu/main/events/KSU-REU/REUquandle.pdf">Some Sharp Ideas on Quandle Construction</a>
%H A177886 A. Hulpke, D. Stanovský, P. Vojtěchovský, <a href="http://arxiv.org/abs/1409.2249">Connected quandles and transitive groups</a>, arXiv:1409.2249 [math.GR], 2014.
%H A177886 S. Nelson, <a href="http://arxiv.org/abs/math/0702038">A polynomial invariant of finite quandles</a>, arXiv:math/0702038 [math.QA], 2007.
%H A177886 S. K. Stein, <a href="http://dx.doi.org/10.1090/S0002-9947-1957-0094404-6">On the Foundations of Quasigroups</a>, Transactions of American Mathematical Society, 85 (1957), 228-256.
%H A177886 Leandro Vendramin, <a href="http://arxiv.org/abs/1105.5341">On the classification of quandles of low order</a>, arXiv:1105.5341v1 [math.GT].
%H A177886 Leandro Vendramin and Matías Graña, <a href="http://code.google.com/p/rig/">Rig, a GAP package for racks and quandles</a>.
%e A177886 a(2) = 0 since the only quandle of order 2 has multiplication table with rows [1,1] and [2,2].
%o A177886 (GAP) (using the Rig package)
%o A177886 LoadPackage("rig");
%o A177886 a:=[1,0];;
%o A177886 Print(1,",");
%o A177886 Print(0,",");
%o A177886 for n in [3..35] do
%o A177886   a[n]:=0;
%o A177886   for i in [1..NrSmallQuandles(n)] do
%o A177886     if IsLatin(SmallQuandle(n,i)) then
%o A177886       a[n]:=a[n]+1;
%o A177886     fi;
%o A177886   od;
%o A177886   Print(a[n],", ");
%o A177886 od; # _W. Edwin Clark_, Nov 26 2011
%Y A177886 Cf. A181769, A176077, A181771.
%Y A177886 See also Index to OEIS under quandles.
%K A177886 nonn,more
%O A177886 1,5
%A A177886 _W. Edwin Clark_, Dec 14 2010
%E A177886 Added fact due to S. K. Stein that a(4k+2) = 0 and a reference to Stein's paper.
%E A177886 a(11)-a(35) from _W. Edwin Clark_, Nov 26 2011
%E A177886 Links to the rig Gap package by _W. Edwin Clark_, Nov 26 2011
%E A177886 a(36)-a(47) by _David Stanovsky_, Oct 01 2014