This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A177886 #36 Dec 26 2021 21:09:00 %S A177886 1,0,1,1,3,0,5,2,8,0,9,1,11,0,5,9,15,0,17,3,7,0,21,2,34,0,62,7,27,0, %T A177886 29,8,11,0,15,9,35,0,13,6,39,0,41,9,36,0,45 %N A177886 The number of isomorphism classes of Latin quandles (a.k.a. left distributive quasigroups) of order n. %C A177886 A quandle is Latin if its multiplication table is a Latin square. A Latin quandle may be described as a left (or right) distributive quasigroup. Sherman Stein (see reference below) proved that a left distributive quasigroup of order n exists if and only if n is not of the form 4k + 2. %H A177886 W. E. Clark, M. Elhamdadi, M. Saito, T. Yeatman, <a href="http://arxiv.org/abs/1312.3307">Quandle Colorings of Knots and Applications</a>, arXiv preprint arXiv:1312.3307, 2013 %H A177886 G. Ehrman, A. Gurpinar, M. Thibault, D. Yetter, <a href="http://www.math.ksu.edu/main/events/KSU-REU/REUquandle.pdf">Some Sharp Ideas on Quandle Construction</a> %H A177886 A. Hulpke, D. Stanovský, P. Vojtěchovský, <a href="http://arxiv.org/abs/1409.2249">Connected quandles and transitive groups</a>, arXiv:1409.2249 [math.GR], 2014. %H A177886 S. Nelson, <a href="http://arxiv.org/abs/math/0702038">A polynomial invariant of finite quandles</a>, arXiv:math/0702038 [math.QA], 2007. %H A177886 S. K. Stein, <a href="http://dx.doi.org/10.1090/S0002-9947-1957-0094404-6">On the Foundations of Quasigroups</a>, Transactions of American Mathematical Society, 85 (1957), 228-256. %H A177886 Leandro Vendramin, <a href="http://arxiv.org/abs/1105.5341">On the classification of quandles of low order</a>, arXiv:1105.5341v1 [math.GT]. %H A177886 Leandro Vendramin and Matías Graña, <a href="http://code.google.com/p/rig/">Rig, a GAP package for racks and quandles</a>. %e A177886 a(2) = 0 since the only quandle of order 2 has multiplication table with rows [1,1] and [2,2]. %o A177886 (GAP) (using the Rig package) %o A177886 LoadPackage("rig"); %o A177886 a:=[1,0];; %o A177886 Print(1,","); %o A177886 Print(0,","); %o A177886 for n in [3..35] do %o A177886 a[n]:=0; %o A177886 for i in [1..NrSmallQuandles(n)] do %o A177886 if IsLatin(SmallQuandle(n,i)) then %o A177886 a[n]:=a[n]+1; %o A177886 fi; %o A177886 od; %o A177886 Print(a[n],", "); %o A177886 od; # _W. Edwin Clark_, Nov 26 2011 %Y A177886 Cf. A181769, A176077, A181771. %Y A177886 See also Index to OEIS under quandles. %K A177886 nonn,more %O A177886 1,5 %A A177886 _W. Edwin Clark_, Dec 14 2010 %E A177886 Added fact due to S. K. Stein that a(4k+2) = 0 and a reference to Stein's paper. %E A177886 a(11)-a(35) from _W. Edwin Clark_, Nov 26 2011 %E A177886 Links to the rig Gap package by _W. Edwin Clark_, Nov 26 2011 %E A177886 a(36)-a(47) by _David Stanovsky_, Oct 01 2014