cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177976 Square array T(n,k) read by antidiagonals up. Cumulative column sums of A177975.

This page as a plain text file.
%I A177976 #33 Jun 12 2021 09:06:50
%S A177976 1,1,1,1,2,1,1,4,3,1,1,6,8,4,1,1,10,15,13,5,1,1,12,29,29,19,6,1,1,18,
%T A177976 42,63,49,26,7,1,1,22,69,106,118,76,34,8,1,1,28,95,189,225,201,111,43,
%U A177976 9,1,1,32,134,289,434,427,320,155,53,10,1,1,42,172,444,729,888,748,484,209,64,11,1
%N A177976 Square array T(n,k) read by antidiagonals up. Cumulative column sums of A177975.
%C A177976 Each row is described by both a binomial expression and a closed form polynomial. The closed form polynomials given in A177977 extends this table to the left. For example the 0th column is A002321 and the -1st column is A092149.
%C A177976 Also number of ordered k-tuples of integers from [ 1..n ] with no global factor. - _Seiichi Manyama_, Jun 12 2021
%H A177976 Seiichi Manyama, <a href="/A177976/b177976.txt">Antidiagonals n = 1..140, flattened</a>
%F A177976 From _Seiichi Manyama_, Jun 12 2021: (Start)
%F A177976 G.f. of column k: (1/(1 - x)) * Sum_{j>=1} mu(j) * x^j/(1 - x^j)^k.
%F A177976 T(n,k) = Sum_{j=1..n} Sum_{d|j} mu(j/d) * binomial(d+k-2,d-1).
%F A177976 T(n,k) = binomial(n+k-1,k) - Sum_{j=2..n} T(floor(n/j),k).  (End)
%e A177976 Table begins:
%e A177976   1..1...1....1.....1.....1......1......1.......1.......1.......1
%e A177976   1..2...3....4.....5.....6......7......8.......9......10......11
%e A177976   1..4...8...13....19....26.....34.....43......53......64......76
%e A177976   1..6..15...29....49....76....111....155.....209.....274.....351
%e A177976   1.10..29...63...118...201....320....484.....703.....988....1351
%e A177976   1.12..42..106...225...427....748...1233....1937....2926....4278
%e A177976   1.18..69..189...434...888...1671...2948....4939....7930...12285
%e A177976   1.22..95..289...729..1624...3303...6260...11209...19150...31447
%e A177976   1.28.134..444..1209..2890...6278..12659...24034...43405...75139
%e A177976   1.32.172..626..1850..4761..11067..23762...47841...91301..166506
%e A177976   1.42.237..911..2850..7763..19074..43209...91598..183678..351261
%e A177976   1.46.287.1203..4059.11829..30911..74129..165737..349426..700699
%e A177976   1.58.377.1657..5878.18016..49474.124516..291706..643355.1347344
%e A177976   1.64.452.2130..8044.26117..75676.200313..492185.1135761.2483392
%e A177976   1.72.552.2766.11020.37599.114199.316228..811416.1952182.4443582
%e A177976   1.80.652.3462.14566.52311.166747.483340.1295295.3248246.7692894
%o A177976 (PARI) T(n, k) = sum(j=1, n, sumdiv(j, d, moebius(j/d)*binomial(d+k-2, d-1))); \\ _Seiichi Manyama_, Jun 12 2021
%o A177976 (PARI) T(n, k) = binomial(n+k-1, k)-sum(j=2, n, T(n\j, k)); \\ _Seiichi Manyama_, Jun 12 2021
%Y A177976 Column k=1..5 gives A000012, A002088, A015631, A015634, A015650.
%Y A177976 Cf. A177975, A177977, A344527, A345229.
%K A177976 nonn,tabl
%O A177976 1,5
%A A177976 _Mats Granvik_, May 16 2010