This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A177992 #20 Dec 28 2021 11:17:26 %S A177992 1,1,1,1,3,1,1,7,3,1,1,15,6,5,1,1,31,10,16,5,1,1,63,15,42,15,7,1,1, %T A177992 127,21,99,35,29,7,1,1,255,28,219,70,93,28,9,1,1,511,36,466,126,256, %U A177992 84,46,9,1,1,1023,45,968,210,638,210,176,45,11,1,1,2047,55,1981,330,1486,462,562,165,67,11,1 %N A177992 Triangle read by rows, A007318 * A177990. %C A177992 Row sums = A045623: (1, 2, 5, 12, 28, 64, 144, ...). %C A177992 Double Riordan array ( 1/(1 - x); x/(1 - 2*x), x*(1 - 2*x)/(1 - x)^2 ) as defined in Davenport et al. - _Peter Bala_, Aug 25 2021 %H A177992 D. E. Davenport, L. W. Shapiro and L. C. Woodson, <a href="https://doi.org/10.37236/2034">The Double Riordan Group</a>, The Electronic Journal of Combinatorics, 18(2) (2012). %F A177992 As infinite lower triangular matrices, A007318 * A177990. %F A177992 From _Peter Bala_, Aug 25 2021: (Start) %F A177992 T(n,2*k) = T(n-1,2*k-1) - T(n-1,2*k+1). %F A177992 T(n,2*k+1) = 2*T(n-1,2*k+1) + T(n-1,2*k). %F A177992 G.f.: A(x,t) = (1 - t)/(1 - 2*t)*(1 - 2*t + t*x)/((1 - t)^2 - t^2*x^2) = 1 + (1 + x)*t + (1 + 3*x + x^2)^t^2 + .... %F A177992 G.f. column 2*k: x^(2*k)/(1 - x)^(2*k+1). %F A177992 G.f. column 2*k+1: x^(2*k+1)/((1 - x)^(2*k+1) * (1 - 2*x)). (End) %e A177992 First few rows of the triangle: %e A177992 1; %e A177992 1, 1; %e A177992 1, 3, 1; %e A177992 1, 7, 3, 1; %e A177992 1, 15, 6, 5, 1; %e A177992 1, 31, 10, 16, 5, 1; %e A177992 1, 63, 15, 42, 15, 7, 1; %e A177992 1, 127, 21, 99, 35, 29, 7, 1; %e A177992 1, 255, 28, 219, 70, 93, 28, 9, 1; %e A177992 1, 511, 36, 466, 126, 256, 84, 46, 9, 1; %e A177992 1, 1023, 45, 968, 210, 638, 210, 176, 45, 11, 1; %e A177992 1, 2047, 55, 1981, 330, 1486, 462, 562, 165, 67, 11, 1; %e A177992 1, 4095, 66, 4017, 495, 3302, 924, 1586, 495, 299, 66, 13, 1; %e A177992 ... %Y A177992 Cf. A177993 = A177990 * A007318. %Y A177992 Cf. A045623, A070909. %K A177992 nonn,tabl %O A177992 0,5 %A A177992 _Gary W. Adamson_, May 16 2010 %E A177992 a(8) corrected and more terms by _Georg Fischer_, Dec 28 2021