This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A178046 #5 Nov 05 2012 19:39:30 %S A178046 1,1,1,1,-8,1,1,-103,-103,1,1,-644,-4284,-644,1,1,-3199,-91004,-91004, %T A178046 -3199,1,1,-14328,-1418031,-5836256,-1418031,-14328,1,1,-60911, %U A178046 -18428967,-243950711,-243950711,-18428967,-60911,1,1,-251876 %N A178046 Triangle t(n, m) = 2*binomial(n,m)^2 -A008292(n+1,m+1)^2 read by rows. %C A178046 Row sums are A028329(n) - A168562(n+1). - _R. J. Mathar_, Nov 05 2012 %e A178046 1; %e A178046 1, 1; %e A178046 1, -8, 1; %e A178046 1, -103, -103, 1; %e A178046 1, -644, -4284, -644, 1; %e A178046 1, -3199, -91004, -91004, -3199, 1; %e A178046 1, -14328, -1418031, -5836256, -1418031, -14328, 1; %e A178046 1, -60911, -18428967, -243950711, -243950711, -18428967, -60911, 1; %e A178046 1, -251876, -213392096, -7785232484, -24395306300, -7785232484, -213392096, -251876, 1; %t A178046 << DiscreteMath`Combinatorica` %t A178046 t[n_, m_] = 2*Binomial[n, m]^2 - Eulerian[n + 1, m]^2; %t A178046 Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; %t A178046 Flatten[%] %Y A178046 Cf. A177823, A008459, A141686, A008292 %K A178046 sign,tabl %O A178046 0,5 %A A178046 _Roger L. Bagula_, May 18 2010