This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A178058 #10 Aug 16 2020 07:55:27 %S A178058 1,1,1,1,2,1,1,1,1,1,1,2,2,2,1,1,3,4,4,3,1,1,2,1,4,1,2,1,1,1,5,3,3,5, %T A178058 1,1,1,2,2,2,4,2,2,2,1,1,3,4,6,2,2,6,4,3,1,1,4,5,2,6,2,6,2,5,4,1 %N A178058 Number of 1's in the Gray code for binomial(n,m). %C A178058 Row sums are: 1, 2, 4, 4, 8, 16, 12, 20, 18, 32, 38,.... %H A178058 Eric W. Weisstein’s World of Mathematics, <a href="https://mathworld.wolfram.com/GrayCode.html">Gray code</a> %F A178058 T(n,m) = A005811(binomial(n,m)), 0<=m<=n. %e A178058 1; %e A178058 1, 1; %e A178058 1, 2, 1; %e A178058 1, 1, 1, 1; %e A178058 1, 2, 2, 2, 1; %e A178058 1, 3, 4, 4, 3, 1; %e A178058 1, 2, 1, 4, 1, 2, 1; %e A178058 1, 1, 5, 3, 3, 5, 1, 1; %e A178058 1, 2, 2, 2, 4, 2, 2, 2, 1; %e A178058 1, 3, 4, 6, 2, 2, 6, 4, 3, 1; %e A178058 1, 4, 5, 2, 6, 2, 6, 2, 5, 4, 1; %p A178058 A178058 := proc(n,m) %p A178058 A005811(binomial(n,m)) ; %p A178058 end proc: # _R. J. Mathar_, Mar 10 2015 %t A178058 GrayCodeList[k_] := Module[{b = IntegerDigits[k, 2], i}, %t A178058 Do[ %t A178058 If[b[[i - 1]] == 1, b[[i]] = 1 - b[[i]]], %t A178058 {i, Length[b], 2, -1} %t A178058 ]; %t A178058 b %t A178058 ] %t A178058 Table[Table[Apply[Plus, GrayCodeList[Binomial[n, m]]], {m, 0, n}], {n, 0, 10}]; %t A178058 Flatten[%] %Y A178058 Cf. A143214. %K A178058 nonn,tabl %O A178058 0,5 %A A178058 _Roger L. Bagula_, May 18 2010 %E A178058 Edited by _R. J. Mathar_, Mar 10 2015