A178107 Coefficient array for orthogonal polynomials P(n,x)=x*P(n-1,x)-(2*floor((n+2)/2)-3)*P(n-2,x), P(0,x)=1,P(1,x)=x.
1, 0, 1, -1, 0, 1, 0, -2, 0, 1, 3, 0, -5, 0, 1, 0, 9, 0, -8, 0, 1, -15, 0, 34, 0, -13, 0, 1, 0, -60, 0, 74, 0, -18, 0, 1, 105, 0, -298, 0, 165, 0, -25, 0, 1, 0, 525, 0, -816, 0, 291, 0, -32, 0, 1, -945, 0, 3207, 0, -2301, 0, 516, 0, -41, 0, 1, 0, -5670, 0, 10551, 0, -4920, 0, 804, 0
Offset: 0
Examples
Triangle begins 1, 0, 1, -1, 0, 1, 0, -2, 0, 1, 3, 0, -5, 0, 1, 0, 9, 0, -8, 0, 1, -15, 0, 34, 0, -13, 0, 1, 0, -60, 0, 74, 0, -18, 0, 1, 105, 0, -298, 0, 165, 0, -25, 0, 1, 0, 525, 0, -816, 0, 291, 0, -32, 0, 1, -945, 0, 3207, 0, -2301, 0, 516, 0, -41, 0, 1 Production matrix is 0, 1, -1, 0, 1, 0, -1, 0, 1, 1, 0, -3, 0, 1, 0, 1, 0, -3, 0, 1, 2, 0, 1, 0, -5, 0, 1, 0, 2, 0, 1, 0, -5, 0, 1, 7, 0, 2, 0, 1, 0, -7, 0, 1, 0, 7, 0, 2, 0, 1, 0, -7, 0, 1 Production matrix of inverse is 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 3, 0, 1, 0, 0, 0, 3, 0, 1, 0, 0, 0, 0, 5, 0, 1, 0, 0, 0, 0, 0, 5, 0, 1, 0, 0, 0, 0, 0, 0, 7, 0, 1, 0, 0, 0, 0, 0, 0, 0, 7, 0, 1
Programs
-
Mathematica
p[0] = 1; p[1] = x; p[n_] := p[n] = Expand[x p[n-1] - (2 Quotient[n+2, 2] - 3) p[n-2]]; Table[CoefficientList[p[n], x], {n, 0, 6}] (* Andrey Zabolotskiy, Dec 26 2023 *)
Comments