cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A178113 Transform of C(n+1,floor((n+1)/2)) by A178112.

Original entry on oeis.org

1, 2, 2, 4, 5, 10, 13, 26, 35, 70, 96, 192, 267, 534, 750, 1500, 2123, 4246, 6046, 12092, 17303, 34606, 49721, 99442, 143365, 286730, 414584, 829168, 1201917, 2403834, 3492117, 6984234, 10165779, 20331558, 29643870, 59287740, 86574831, 173149662
Offset: 0

Views

Author

Paul Barry, May 20 2010

Keywords

Comments

Hankel transform is A178115.

Crossrefs

Formula

a(n) = Sum_{k=0..n} C(floor(n/2),floor(k/2))*((1+(-1)^(n-k))/2)*C(k+1,floor((k+1)/2)). [The formula seems to generate A026392, not these terms. - R. J. Mathar, Feb 10 2015]
Conjecture: a(2*n) = A005773(n+1), a(2*n+1) = 2*a(2*n). - Jason Yuen, Feb 09 2025

A178111 Number triangle T(n,k)=(-1)^((n-k)/2)*C(floor(n/2),floor(k/2))*(1+(-1)^(n-k))/2.

Original entry on oeis.org

1, 0, 1, -1, 0, 1, 0, -1, 0, 1, 1, 0, -2, 0, 1, 0, 1, 0, -2, 0, 1, -1, 0, 3, 0, -3, 0, 1, 0, -1, 0, 3, 0, -3, 0, 1, 1, 0, -4, 0, 6, 0, -4, 0, 1, 0, 1, 0, -4, 0, 6, 0, -4, 0, 1, -1, 0, 5, 0, -10, 0, 10, 0, -5, 0, 1, 0, -1, 0, 5, 0, -10, 0, 10, 0, -5, 0, 1, 1, 0, -6, 0, 15, 0, -20, 0, 15, 0, -6, 0, 1
Offset: 0

Views

Author

Paul Barry, May 20 2010

Keywords

Comments

Coefficient array of orthogonal polynomials P(n,x)=xP(n-1,x)-((1+(-1)^n)/2)*P(n-2,x), P(0,x)=1,P(1,x)=x.
Inverse is A178112.

Examples

			Triangle begins
1,
0, 1,
-1, 0, 1,
0, -1, 0, 1,
1, 0, -2, 0, 1,
0, 1, 0, -2, 0, 1,
-1, 0, 3, 0, -3, 0, 1,
0, -1, 0, 3, 0, -3, 0, 1,
1, 0, -4, 0, 6, 0, -4, 0, 1,
0, 1, 0, -4, 0, 6, 0, -4, 0, 1,
-1, 0, 5, 0, -10, 0, 10, 0, -5, 0, 1
Production matrix is
0, 1,
-1, 0, 1,
0, 0, 0, 1,
0, 0, -1, 0, 1,
0, 0, 0, 0, 0, 1,
0, 0, 0, 0, -1, 0, 1,
0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, -1, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Production matrix of inverse is
0, 1,
1, 0, 1,
0, 0, 0, 1,
0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 0, 0, 1,
0, 0, 0, 0, 0, 0, 1, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1
		

Programs

  • Maple
    P := (n,x) -> `if`(n < 2, x^n, x*P(n-1,x) - ((1+(-1)^n)/2)*P(n-2,x)):
    ListTools:-Flatten([seq(PolynomialTools:-CoefficientList(P(n,x), x),n=0..12)]);
    # Peter Luschny, Aug 10 2019
Showing 1-2 of 2 results.