This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A178120 #8 Aug 06 2023 08:17:34 %S A178120 1,-2,1,7,-6,1,-36,40,-12,1,253,-326,131,-20,1,-2278,3233,-1552,324, %T A178120 -30,1,25059,-38140,20678,-5260,675,-42,1,-325768,523456,-310560, %U A178120 90754,-14380,1252,-56,1,4886521,-8205244,5223602,-1694244,312059,-33866,2135,-72,1 %N A178120 Coefficient array of orthogonal polynomials P(n,x)=(x-2n)*P(n-1,x)-(2n-3)*P(n-2,x), P(0,x)=1,P(1,x)=x-2. %C A178120 Inverse is A178121. First column is A112293 signed. %e A178120 Triangle begins %e A178120 1, %e A178120 -2, 1, %e A178120 7, -6, 1, %e A178120 -36, 40, -12, 1, %e A178120 253, -326, 131, -20, 1, %e A178120 -2278, 3233, -1552, 324, -30, 1, %e A178120 25059, -38140, 20678, -5260, 675, -42, 1, %e A178120 -325768, 523456, -310560, 90754, -14380, 1252, -56, 1, %e A178120 4886521, -8205244, 5223602, -1694244, 312059, -33866, 2135, -72, 1 %e A178120 Production matrix of inverse is %e A178120 2, 1, %e A178120 1, 4, 1, %e A178120 0, 3, 6, 1, %e A178120 0, 0, 5, 8, 1, %e A178120 0, 0, 0, 7, 10, 1, %e A178120 0, 0, 0, 0, 9, 12, 1, %e A178120 0, 0, 0, 0, 0, 11, 14, 1, %e A178120 0, 0, 0, 0, 0, 0, 13, 16, 1, %e A178120 0, 0, 0, 0, 0, 0, 0, 15, 18, 1 %p A178120 A178120 := proc(n,k) %p A178120 if n = k then %p A178120 1; %p A178120 elif n = 1 and k = 0 then %p A178120 -2 ; %p A178120 elif k < 0 or k > n then %p A178120 0 ; %p A178120 else %p A178120 -2*n*procname(n-1,k)+procname(n-1,k-1)-(2*n-3)*procname(n-2,k) ; %p A178120 end if; %p A178120 end proc: # _R. J. Mathar_, Dec 03 2014 %t A178120 P[0, _] = 1; %t A178120 P[1, x_] := x - 2; %t A178120 P[n_, x_] := P[n, x] = (x-2n) P[n-1, x] - (2n-3) P[n-2, x]; %t A178120 T[n_] := Module[{x}, CoefficientList[P[n, x], x]]; %t A178120 Table[T[n], {n, 0, 8}] // Flatten (* _Jean-François Alcover_, Aug 06 2023 *) %K A178120 sign,easy,tabl %O A178120 0,2 %A A178120 _Paul Barry_, May 20 2010