cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178120 Coefficient array of orthogonal polynomials P(n,x)=(x-2n)*P(n-1,x)-(2n-3)*P(n-2,x), P(0,x)=1,P(1,x)=x-2.

This page as a plain text file.
%I A178120 #8 Aug 06 2023 08:17:34
%S A178120 1,-2,1,7,-6,1,-36,40,-12,1,253,-326,131,-20,1,-2278,3233,-1552,324,
%T A178120 -30,1,25059,-38140,20678,-5260,675,-42,1,-325768,523456,-310560,
%U A178120 90754,-14380,1252,-56,1,4886521,-8205244,5223602,-1694244,312059,-33866,2135,-72,1
%N A178120 Coefficient array of orthogonal polynomials P(n,x)=(x-2n)*P(n-1,x)-(2n-3)*P(n-2,x), P(0,x)=1,P(1,x)=x-2.
%C A178120 Inverse is A178121. First column is A112293 signed.
%e A178120 Triangle begins
%e A178120 1,
%e A178120 -2, 1,
%e A178120 7, -6, 1,
%e A178120 -36, 40, -12, 1,
%e A178120 253, -326, 131, -20, 1,
%e A178120 -2278, 3233, -1552, 324, -30, 1,
%e A178120 25059, -38140, 20678, -5260, 675, -42, 1,
%e A178120 -325768, 523456, -310560, 90754, -14380, 1252, -56, 1,
%e A178120 4886521, -8205244, 5223602, -1694244, 312059, -33866, 2135, -72, 1
%e A178120 Production matrix of inverse is
%e A178120 2, 1,
%e A178120 1, 4, 1,
%e A178120 0, 3, 6, 1,
%e A178120 0, 0, 5, 8, 1,
%e A178120 0, 0, 0, 7, 10, 1,
%e A178120 0, 0, 0, 0, 9, 12, 1,
%e A178120 0, 0, 0, 0, 0, 11, 14, 1,
%e A178120 0, 0, 0, 0, 0, 0, 13, 16, 1,
%e A178120 0, 0, 0, 0, 0, 0, 0, 15, 18, 1
%p A178120 A178120 := proc(n,k)
%p A178120     if n = k then
%p A178120         1;
%p A178120     elif n = 1 and k = 0 then
%p A178120         -2 ;
%p A178120     elif k < 0 or k > n then
%p A178120         0 ;
%p A178120     else
%p A178120         -2*n*procname(n-1,k)+procname(n-1,k-1)-(2*n-3)*procname(n-2,k) ;
%p A178120     end if;
%p A178120 end proc: # _R. J. Mathar_, Dec 03 2014
%t A178120 P[0, _] = 1;
%t A178120 P[1, x_] := x - 2;
%t A178120 P[n_, x_] := P[n, x] = (x-2n) P[n-1, x] - (2n-3) P[n-2, x];
%t A178120 T[n_] := Module[{x}, CoefficientList[P[n, x], x]];
%t A178120 Table[T[n], {n, 0, 8}] // Flatten (* _Jean-François Alcover_, Aug 06 2023 *)
%K A178120 sign,easy,tabl
%O A178120 0,2
%A A178120 _Paul Barry_, May 20 2010