This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A178126 #11 Aug 03 2021 01:52:47 %S A178126 1,2,4,6,9,9,24,56,24,16,120,250,275,50,25,720,1884,1350,960,90,36, %T A178126 5040,12348,14896,5145,2695,147,49,40320,114624,105056,80416,15680, %U A178126 6496,224,64,362880,986256,1282284,605556,336609,40824,13986,324,81 %N A178126 Triangle T(n, k) = coefficients of (n+1)!*(binomial(x+n+1, n+1) - binomial(x, n+1)), read by rows. %D A178126 Brendan Hassett, Introduction to algebraic Geometry, Cambridge University Press, New York, 2007, page 214 %H A178126 G. C. Greubel, <a href="/A178126/b178126.txt">Rows n = 0..50 of the triangle, flattened</a> %F A178126 T(n, k) = coefficients of n!*(binomial(x+n+1, n+1) - binomial(x, n+1)). %F A178126 From _G. C. Greubel_, Apr 14 2021: (Start) %F A178126 T(n, k) = coefficients of Sum_{j=0..n+1} Stirling1(n+1, j)*( (x+n+1)^j - x^j ). %F A178126 T(n, 0) = (n+1)!. %F A178126 T(n, n) = (n+1)^2. %F A178126 Sum_{k=0..n} T(n,k) = (n+2)! - [n=0]. (End) %e A178126 Triangle begins as: %e A178126 1; %e A178126 2, 4; %e A178126 6, 9, 9; %e A178126 24, 56, 24, 16; %e A178126 120, 250, 275, 50, 25; %e A178126 720, 1884, 1350, 960, 90, 36; %e A178126 5040, 12348, 14896, 5145, 2695, 147, 49; %e A178126 40320, 114624, 105056, 80416, 15680, 6496, 224, 64; %e A178126 362880, 986256, 1282284, 605556, 336609, 40824, 13986, 324, 81; %e A178126 3628800, 10991520, 11727000, 9582200, 2693250, 1171380, 94500, 27600, 450, 100; %t A178126 T[n_, k_]:= SeriesCoefficient[Series[Sum[StirlingS1[n+1, j]*((x+n+1)^j -x^j), {j, 0, n+1}], {x, 0, n+1}], k]; %t A178126 Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Apr 14 2021 *) %o A178126 (Sage) %o A178126 def T(n,k): return ( sum((-1)^(n+j+1)*stirling_number1(n+1, j)*((x+n+1)^j - x^j) for j in (0..n+1)) ).series(x,n+1).list()[k] %o A178126 flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Apr 14 2021 %Y A178126 Cf. A048994, A139167. %K A178126 nonn,tabl %O A178126 0,2 %A A178126 _Roger L. Bagula_, May 20 2010 %E A178126 Edited by _G. C. Greubel_, Apr 14 2021