A178159 Modified variant of A006645, the self-convolution of the Pell series.
1, 2, 8, 22, 68, 188, 532, 1444, 3921, 10446, 27704, 72714, 189912, 492760, 1273064, 3273896, 8389489, 21423994, 54550728, 138520286, 350899964, 886925652, 2237284668, 5633150988, 14159465505, 35535456518, 89053087224, 222870328210, 557074041840, 1390807477040
Offset: 1
Examples
(1/2) * (1, 4, 14, 44, 131,...) + (1, 0, 2, 0, 5,...) = (1/2) * (2, 4, 16, 44, 136, 376,...) = (1, 2, 8, 22, 68, 188,...).
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,0,-12,4,4,4,4,1).
Programs
-
Maple
A178159 := proc(n) if type (n,'even') then (A006645(n+2) + A000129(n/2+1))/2 ; else A006645(n+2)/2 ; fi; end proc: # R. J. Mathar, Jul 21 2015
-
PARI
Vec(-x*(2*x^3-2*x+1)/((x^2+2*x-1)^2*(x^4+2*x^2-1)) + O(x^40)) \\ Colin Barker, Jul 21 2015
Formula
(1/2) * [ (1, 4, 14, 44, 131,...) + (1, 0, 2, 0, 5,...)]; where (1, 4, 14, 44,...) = A006645, the self-convolution of the Pell series, and (1, 0, 2, 0, 5,...) = the aerated Pell series.
G.f.: -x*(2*x^3-2*x+1) / ((x^2+2*x-1)^2*(x^4+2*x^2-1)). - Colin Barker, Jul 21 2015
Extensions
Corrected by R. J. Mathar, Jul 21 2015
Comments