cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178176 a(n) is the number of central quotients of simple compact Lie groups of dimension n.

This page as a plain text file.
%I A178176 #45 Apr 05 2025 09:02:37
%S A178176 0,0,2,0,0,0,0,2,0,2,0,0,0,1,3,0,0,0,0,0,4,0,0,2,0,0,0,3,0,0,0,0,0,0,
%T A178176 4,4,0,0,0,0,0,0,0,0,3,0,0,2,0,0,0,1,0,0,4,0,0,0,0,0,0,0,4,0,0,4,0,0,
%U A178176 0,0,0,0,0,0,0,0,0,6,0,3,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,4
%N A178176 a(n) is the number of central quotients of simple compact Lie groups of dimension n.
%H A178176 Andrea Aveni, <a href="/A178176/b178176.txt">Table of n, a(n) for n = 1..1000</a>
%H A178176 Math Overflow, <a href="https://mathoverflow.net/questions/489474/number-of-compact-connected-lie-groups-of-given-dimension">Number of compact connected Lie groups of given dimension</a>
%H A178176 nLab, <a href="https://ncatlab.org/nlab/show/semi-spin+group">semi-spin group</a>
%e A178176 a(3) = 2 since the 3-dimensional SU(2) has two central quotients: SU(2) and SU(2)/2 = SO(3).
%e A178176 a(28) = 3 and not 4 since, because of triality for Spin(8), the semi-spin group HSpin(8) is isomorphic to SO(8). Thus, the only groups are Spin(8), SO(8), PSO(8). See the nLab link.
%e A178176 The unusually large value a(78) = 6 is due to Spin(13), SO(13), Sp(6), PSp(6), E_6, E_6/Z3 all of dimension 78.
%o A178176 (R)
%o A178176 Number.Divisors=function(n){
%o A178176   out=c()
%o A178176   for(j in 1:n){if(n%%j==0){out=c(out,j)}}
%o A178176   return(length(out))
%o A178176 }
%o A178176 a178176=function(n){
%o A178176   kSU=sqrt(n+1)
%o A178176   kSO=(sqrt(8*n+1)+1)/2
%o A178176   kSp=(sqrt(8*n+1)-1)/4
%o A178176   a=0
%o A178176   if(n %in% c(14,52,248)){a=a+1} # G2, F4, E8 with center Z1
%o A178176   if(n %in% c(78,133)){a=a+2} # E7 with center Z2, E6 with center Z3
%o A178176   if(kSp%%1==0 & kSp>=2){a=a+2} # Sp(k), PSp(k)
%o A178176   if(kSU%%1==0 & kSU>=2){a=a+Number.Divisors(kSU)} # SU(n)/Zd
%o A178176   if(kSO%%1==0 & kSO>=7 & kSO!=8){
%o A178176     if(kSO%%2!=0){a=a+2} # Spin(k), SO(k)
%o A178176     if(kSO%%2==0 & kSO%%4!=0){a=a+3} # Spin(k), SO(k), PSO(k)
%o A178176     if(kSO%%4==0){a=a+4} # Spin(k), SO(k), HSpin(k), PSO(k)
%o A178176   }
%o A178176   if(n==28){a=3} # Because of Triality: Spin(8), HSpin(8)=SO(8), PSO(8)
%o A178176   return(a)
%o A178176 } # _Andrea Aveni_, Mar 23 2025
%K A178176 nonn
%O A178176 1,3
%A A178176 _Andrew Rupinski_, Dec 18 2010
%E A178176 a(28) corrected by _Andrea Aveni_, Mar 23 2025