This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A178217 #45 Oct 14 2024 01:31:09 %S A178217 1,12,464,38720,5678400,1294720000,423809075200,188422340198400, %T A178217 109244157102080000,80068011114291200000,72384558633074688000000, %U A178217 79125533869852634644480000,102879028406438808699535360000,156917389218035568246207283200000,277479100225377558605912342528000000 %N A178217 Number of unsigned permutations in S_{3n-1} whose breakpoint graph contains only cycles of length 3. %C A178217 The number of permutations in S_{n} whose breakpoint graph contains only cycles of length 3 is nonzero only for n=3*k-1 (see references for definitions). %H A178217 J.-P. Doignon and A. Labarre, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL10/Doignon/doignon77.html">On Hultman Numbers</a>, J. Integer Seq., 10 (2007), 13 pages. %H A178217 A. Labarre, <a href="http://difusion.ulb.ac.be/vufind/Record/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210470/Holdings">Combinatorial aspects of genome rearrangements and haplotype networks</a> (2008), Ph. D. thesis. %F A178217 a(n) = (3*n)!/(n!*12^n)*Sum_{i=0..n} binomial(n,i)*3^i/(2*i+1). (See references for a proof.) %e A178217 See references for examples (nongraphical explanations do not help much). %o A178217 (Maxima) a(p) := ((3*p)!/(p!*12^p))*sum(binomial(p,i)*(3^i)/(2*i+1),i,0,p); %o A178217 (PARI) a(n) = (3*n)!/(n!*12^n) * sum(i = 0, n, binomial(n, i)*3^i/(2*i+1)); \\ _Michel Marcus_, Sep 05 2013 %K A178217 nonn %O A178217 1,2 %A A178217 _Anthony Labarre_, Dec 25 2010 %E A178217 More terms from _Michel Marcus_, Oct 14 2024