This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A178222 #44 Sep 08 2022 08:45:53 %S A178222 0,2,8,28,88,270,816,2456,7376,22138,66424,199284,597864,1793606, %T A178222 5380832,16142512,48427552,145282674,435848040,1307544140,3922632440, %U A178222 11767897342,35303692048,105911076168,317733228528 %N A178222 Partial sums of floor(3^n/4). %C A178222 Partial sums of A081251(n-1). %H A178222 Vincenzo Librandi, <a href="/A178222/b178222.txt">Table of n, a(n) for n = 1..1000</a> %H A178222 Mircea Merca, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL14/Merca/merca3.html">Inequalities and Identities Involving Sums of Integer Functions</a> J. Integer Sequences, Vol. 14 (2011), Article 11.9.1. %H A178222 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-2,-4,3). %F A178222 a(n) = round((3*3^n - 4*n - 4)/8). %F A178222 a(n) = floor((3*3^n - 4*n - 3)/8). %F A178222 a(n) = ceiling((3*3^n - 4*n - 5)/8). %F A178222 a(n) = round((3*3^n - 4*n - 3)/8). %F A178222 a(n) = a(n-2) + 3^(n-1) - 1, n > 2. %F A178222 From _Bruno Berselli_, Jan 14 2011: (Start) %F A178222 a(n) = (3*3^n - 4*n - 4 + (-1)^n)/8. %F A178222 G.f.: 2*x^2/((1+x)*(1-3*x)*(1-x)^2). (End) %e A178222 a(3) = 0 + 2 + 6 = 8. %p A178222 seq (round ((3*3^n-4*n-3)/8), n=1..25); %t A178222 Accumulate[Floor[3^Range[30]/4]] (* _Harvey P. Dale_, Nov 04 2011 *) %t A178222 CoefficientList[Series[2 x/((1 + x) (1 - 3 x) (1 - x)^2), {x, 0, 50}], x] (* _Vincenzo Librandi_, Mar 26 2014 *) %o A178222 (Magma) [Floor((3*3^n-4*n-3)/8): n in [1..30]]; // _Vincenzo Librandi_, Jun 23 2011 %Y A178222 Cf. A081251. %K A178222 nonn,easy %O A178222 1,2 %A A178222 _Mircea Merca_, Dec 26 2010