A178249 Table T(n,k) counts the involutions of n with longest increasing contiguous subsequence of length k.
1, 1, 1, 1, 2, 1, 1, 6, 2, 1, 1, 14, 8, 2, 1, 1, 37, 27, 8, 2, 1, 1, 96, 94, 30, 8, 2, 1, 1, 270, 338, 114, 30, 8, 2, 1, 1, 777, 1237, 446, 118, 30, 8, 2, 1, 1, 2370, 4684, 1809, 473, 118, 30, 8, 2, 1, 1, 7450, 18142, 7502, 1964, 478, 118, 30, 8, 2, 1, 1, 24485, 72524, 32093, 8414, 1998, 478, 118, 30, 8, 2, 1
Offset: 1
Examples
T(4,2) = 6 because the 6 involutions with longest increasing contiguous subsequence lengths equal to 2 are: 1324, 1432, 2143, 3214, 3412, 4231. Table starts: 1; 1, 1; 1, 2, 1; 1, 6, 2, 1; 1, 14, 8, 2, 1; 1, 37, 27, 8, 2, 1; 1, 96, 94, 30, 8, 2, 1; 1, 270, 338, 114, 30, 8, 2, 1;
Programs
-
Mathematica
(* first do *) Needs["Combinatorica`"] (* then *) maxISS[perm_List] := Max[0, (Max @@ (Length[#1]*Sign[First[#1]] & ) /@ Split[Sign[Rest[#1] - Drop[#1, -1]]] & )[perm]];classMaxISS[par_?PartitionQ]:=Count[ maxISS/@( TableauxToPermutation[FirstLexicographicTableau[par], #]&/@Tableaux[par] ) ,#]&/@(-1+Range[ Tr[par] ]); Table[Apply[Plus,classMaxISS/@Partitions[n]],{n,2,6}];
Extensions
Definition corrected by Wouter Meeussen, Dec 22 2010
Comments