cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178249 Table T(n,k) counts the involutions of n with longest increasing contiguous subsequence of length k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 2, 1, 1, 14, 8, 2, 1, 1, 37, 27, 8, 2, 1, 1, 96, 94, 30, 8, 2, 1, 1, 270, 338, 114, 30, 8, 2, 1, 1, 777, 1237, 446, 118, 30, 8, 2, 1, 1, 2370, 4684, 1809, 473, 118, 30, 8, 2, 1, 1, 7450, 18142, 7502, 1964, 478, 118, 30, 8, 2, 1, 1, 24485, 72524, 32093, 8414, 1998, 478, 118, 30, 8, 2, 1
Offset: 1

Views

Author

Wouter Meeussen, Dec 20 2010

Keywords

Comments

Reverse of rows converges to 1,2,8,30,118,478,2004,8666,..

Examples

			T(4,2) = 6 because the 6 involutions with longest increasing contiguous subsequence lengths equal to 2 are: 1324, 1432, 2143, 3214, 3412, 4231.
Table starts:
1;
1,   1;
1,   2,   1;
1,   6,   2,   1;
1,  14,   8,   2,  1;
1,  37,  27,   8,  2, 1;
1,  96,  94,  30,  8, 2, 1;
1, 270, 338, 114, 30, 8, 2, 1;
		

Crossrefs

Cf. A008304; row sums are A000085; A047884 removes the contiguity requirement.

Programs

  • Mathematica
    (* first do *)
    Needs["Combinatorica`"]
    (* then *)
    maxISS[perm_List] := Max[0, (Max @@ (Length[#1]*Sign[First[#1]] & ) /@ Split[Sign[Rest[#1] - Drop[#1, -1]]] & )[perm]];classMaxISS[par_?PartitionQ]:=Count[ maxISS/@( TableauxToPermutation[FirstLexicographicTableau[par], #]&/@Tableaux[par]  ) ,#]&/@(-1+Range[ Tr[par] ]);
    Table[Apply[Plus,classMaxISS/@Partitions[n]],{n,2,6}];

Extensions

Definition corrected by Wouter Meeussen, Dec 22 2010