This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A178304 #10 Mar 03 2019 12:30:44 %S A178304 1,1,1,1,-1,1,1,2,2,1,1,-5,1,-5,1,1,3,1,1,3,1,1,-2,4,-5,4,-2,1,1,3,3, %T A178304 3,3,3,3,1,1,-11,1,-7,5,-7,1,-11,1,1,4,-2,1,4,4,1,-2,4,1,1,-9,1,-19,1, %U A178304 -9,1,-19,1,-9,1 %N A178304 Triangle T(n,m) = 1 + f(n+1)*(f(m+1) + f(n-m+1) - 1 - f(n+1)), read by rows, where f(.)=A002487(.). %C A178304 Row sums are 1, 2, 1, 6, -7, 10, 1, 20, -27, 16, -59, ... %e A178304 Rows n >= 0, 0 <= k <= n begin %e A178304 1; %e A178304 1, 1; %e A178304 1, -1, 1; %e A178304 1, 2, 2, 1; %e A178304 1, -5, 1, -5, 1; %e A178304 1, 3, 1, 1, 3, 1; %e A178304 1, -2, 4, -5, 4, -2, 1; %e A178304 1, 3, 3, 3, 3, 3, 3, 1; %e A178304 1, -11, 1, -7, 5, -7, 1, -11, 1; %e A178304 1, 4, -2, 1, 4, 4, 1, -2, 4, 1; %e A178304 1, -9, 1, -19, 1, -9, 1, -19, 1, -9, 1; %p A178304 A002487 := proc(n) option remember; if n <=1 then n; else if type(n,'even') then procname(n/2) ; else procname((n-1)/2)+procname(1+(n-1)/2) ; end if; end if; end proc: %p A178304 A178304 := proc(n,m) 1 + A002487(n+1)*( A002487(m+1)+A002487(n-m+1)-1-A002487(n+1) ) ; end proc: %p A178304 seq(seq(A178304(n,k),k=0..n),n=0..15) ; # _N. J. A. Sloane_, Jul 20 2010 %t A178304 a[0] = 0; a[1] = 1; %t A178304 a[n_] := a[n] = If[Mod[n, 2] == 0, a[Floor[n/2]], a[ Floor[(n - 1)/2]] + a[Floor[(n + 1)/2]]]; %t A178304 tg[n_, m_] := 1 + a[n + 1]*a[m + 1] + a[n + 1]*a[n - m + 1] - (a[n + 1]*a[ 0 + 1] + a[n + 1]*a[n - 0 + 1]); %t A178304 Table[Table[tg[n, m], {m, 0, n}], {n, 0, 10}]; %t A178304 Flatten[%] %Y A178304 Cf. A002487, A177443. %K A178304 sign,tabl,easy %O A178304 0,8 %A A178304 _Roger L. Bagula_ and _Gary W. Adamson_, May 24 2010 %E A178304 Definition simplified by the Assoc. Eds. of the OEIS, Jul 20 2010