This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A178316 #16 Apr 19 2024 23:40:39 %S A178316 2,5,11,19,61,101,109,151,181,199,601,619,659,661,1019,1021,1061,1091, %T A178316 1109,1129,1151,1181,1201,1229,1259,1291,1511,1559,1601,1609,1621, %U A178316 1669,1699,1811,1901,1999,6011,6091,6101,6199,6211,6221,6229,6521,6551,6569 %N A178316 Primes whose digital rotation is still prime. %C A178316 This means if written as in a digital clock and rotated 180 degrees around the center the result is also prime (possibly a different prime). %D A178316 Guy, R. K., Unsolved Problems in Number Theory, p 15 This sequence is related to the palindromic primes with symmetries as in Guy's book. %H A178316 Seiichi Manyama, <a href="/A178316/b178316.txt">Table of n, a(n) for n = 1..10000</a> %e A178316 For example 1259 becomes 6521 under such a rotation. %t A178316 Select[Range[6570],PrimeQ[#]&&PrimeQ[FromDigits[Reverse[IntegerDigits[#]/.{6->9,9->6}]]]&&ContainsOnly[IntegerDigits[#],{0,1,2,5,6,8,9}]&] (* _James C. McMahon_, Apr 09 2024 *) %o A178316 (Python) %o A178316 from itertools import count, islice, product %o A178316 from sympy import isprime %o A178316 def A178316_gen(): %o A178316 yield from (2,5) %o A178316 r = ''.maketrans('69','96') %o A178316 for l in count(1): %o A178316 for a in '125689': %o A178316 for d in product('0125689',repeat=l): %o A178316 s = a+''.join(d) %o A178316 m = int(s) %o A178316 if isprime(m) and isprime(int(s[::-1].translate(r))): %o A178316 yield m %o A178316 A178316_list = list(islice(A178316_gen(),40)) # _Chai Wah Wu_, Apr 09 2024 %Y A178316 Cf. A007500, A055387, A018847. %K A178316 nonn,base %O A178316 1,1 %A A178316 _David Nacin_, May 24 2010