cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178372 Number of ways to place 8 nonattacking amazons (superqueens) on an 8 X n board.

This page as a plain text file.
%I A178372 #15 Sep 12 2015 11:00:23
%S A178372 0,0,0,0,0,0,0,0,0,32,552,4738,27110,119602,437640,1376504,3835578,
%T A178372 9697416,22605024,49208658,101004522,197024206,367556982,659230078,
%U A178372 1141734758,1916570390,3128196492,4978021504,7741704218,11790289180
%N A178372 Number of ways to place 8 nonattacking amazons (superqueens) on an 8 X n board.
%C A178372 An amazon (superqueen) moves like a queen and a knight.
%H A178372 Vincenzo Librandi, <a href="/A178372/b178372.txt">Table of n, a(n) for n = 1..1000</a>
%H A178372 V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Non-attacking chess pieces</a>, 6ed, 2013
%F A178372 For n >= 31, a(n) = n^8 -110*n^7 +5684*n^6 -180400*n^5 +3845495*n^4 -56292452*n^3 +551196090*n^2 -3289297810*n +9121996624.
%F A178372 G.f.: - 2*x^10*(72*x^29 - 244*x^28 + 40*x^27 + 1379*x^26 - 3400*x^25 + 4619*x^24 - 6525*x^23 + 10407*x^22 - 8879*x^21 - 901*x^20 + 4213*x^19 + 10475*x^18 - 33273*x^17 + 60823*x^16 - 90147*x^15 + 109862*x^14 - 106589*x^13 + 92686*x^12 - 68408*x^11 + 45714*x^10 - 16426*x^9 + 999*x^8 + 9801*x^7 - 1850*x^6 + 2355*x^5 + 1922*x^4 + 826*x^3 + 461*x^2 + 132*x + 16)/(x - 1)^9.
%t A178372 CoefficientList[Series[- 2 x^9 (72 x^29 - 244 x^28 + 40 x^27 + 1379 x^26 - 3400 x^25 + 4619 x^24 - 6525 x^23 + 10407 x^22 - 8879 x^21 - 901 x^20 + 4213 x^19 + 10475 x^18 - 33273 x^17 + 60823 x^16 - 90147 x^15 + 109862 x^14 - 106589 x^13 + 92686 x^12 - 68408 x^11 + 45714 x^10 - 16426 x^9 + 999 x^8 + 9801 x^7 - 1850 x^6 + 2355 x^5 + 1922 x^4 + 826 x^3 + 461 x^2 + 132 x + 16) / (x - 1)^9, {x, 0, 50}], x] (* _Vincenzo Librandi_, May 31 2013 *)
%Y A178372 Cf. A174642, A174644, A174645, A174646.
%K A178372 nonn,easy
%O A178372 1,10
%A A178372 _Vaclav Kotesovec_, May 26 2010