cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178404 Numbers such that the rounded up arithmetic mean of their digits equals their digital root.

This page as a plain text file.
%I A178404 #13 Feb 10 2019 03:39:35
%S A178404 0,1,2,3,4,5,6,7,8,9,10,99,100,149,158,167,176,185,194,239,248,257,
%T A178404 266,275,284,293,329,338,347,356,365,374,383,392,419,428,437,446,455,
%U A178404 464,473,482,491,509,518,527,536,545,554,563,572,581,590,608,617,626,635
%N A178404 Numbers such that the rounded up arithmetic mean of their digits equals their digital root.
%C A178404 A004427(a(n)) = A010888(a(n)); complement of A178405.
%H A178404 Reinhard Zumkeller, <a href="/A178404/b178404.txt">Table of n, a(n) for n = 1..1000</a>
%e A178404 From _Reinhard Zumkeller_, May 28 2010: (Start)
%e A178404 1093 --> 1+0+9+3=13 --> A010888(1093) = 1+3 = 4 and also
%e A178404 1093 --> 1+0+9+3=13 --> A004427(1093) = ceiling(13/4) = 4,
%e A178404 therefore 1093 is a term: a(100) = 1093. (End)
%p A178404 A178404 := proc(n) option remember: local k: if(n=1)then return 0: fi: k:=procname(n-1)+1: do if(ceil(add(d, d=convert(k,base,10))/length(k))-1 = (k-1) mod 9)then return k: fi: k:=k+1: od: end: seq(A178404(n),n=1..57); # _Nathaniel Johnston_, May 04 2011
%t A178404 amdrQ[n_]:=NestWhile[Total[IntegerDigits[#]]&,n,#>9&]==Ceiling[ Mean[ IntegerDigits[n]]]; Select[Range[0,1000],amdrQ] (* _Harvey P. Dale_, Oct 10 2013 *)
%Y A178404 Cf. A004427, A010888, A178405.
%K A178404 base,easy,nonn
%O A178404 1,3
%A A178404 _Reinhard Zumkeller_, May 27 2010