cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178432 Number of isomorphism classes of kei (involutory quandles) of order n.

This page as a plain text file.
%I A178432 #32 Nov 07 2023 14:43:51
%S A178432 1,1,1,3,5,13,41,142,665,4288,36455,436672,6926801
%N A178432 Number of isomorphism classes of kei (involutory quandles) of order n.
%C A178432 The terms can be calculated by using the Mace4C system which is an isomorph-free model finder. - _Choiwah Chow_, Oct 30 2023
%H A178432 P. Jedlicka, A. Pilitowska, D. Stanovsky et al., <a href="http://arxiv.org/abs/1409.8396">The structure of medial quandles</a>, arXiv preprint 1409.8396 [math.GR], 2014.
%H A178432 David Joyce, <a href="http://dx.doi.org/10.1016/0022-4049(82)90077-9">A classifying invariant of knots, the knot quandle</a>, J. Pure Appl. Algebra 23 (1982) 37-65.
%H A178432 Sam Nelson, <a href="http://www1.cmc.edu/pages/faculty/VNelson/quandles.html">Quandles and Racks</a>
%H A178432 Mituhisa Takasaki, <a href="https://www.jstage.jst.go.jp/article/tmj1911/49/0/49_0_145/_article/-char/en">Abstraction of symmetric transformations</a> (also referenced as Abstractions of symmetric functions), Tohoku Math. J., 49 (1943), 143-207 [in Japanese].
%Y A178432 Cf. A181769, A226173, A242044.
%K A178432 nonn,hard,more
%O A178432 0,4
%A A178432 _James McCarron_, Dec 21 2010
%E A178432 a(11)-a(12) from _Choiwah Chow_, Oct 30 2023