This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A178432 #32 Nov 07 2023 14:43:51 %S A178432 1,1,1,3,5,13,41,142,665,4288,36455,436672,6926801 %N A178432 Number of isomorphism classes of kei (involutory quandles) of order n. %C A178432 The terms can be calculated by using the Mace4C system which is an isomorph-free model finder. - _Choiwah Chow_, Oct 30 2023 %H A178432 P. Jedlicka, A. Pilitowska, D. Stanovsky et al., <a href="http://arxiv.org/abs/1409.8396">The structure of medial quandles</a>, arXiv preprint 1409.8396 [math.GR], 2014. %H A178432 David Joyce, <a href="http://dx.doi.org/10.1016/0022-4049(82)90077-9">A classifying invariant of knots, the knot quandle</a>, J. Pure Appl. Algebra 23 (1982) 37-65. %H A178432 Sam Nelson, <a href="http://www1.cmc.edu/pages/faculty/VNelson/quandles.html">Quandles and Racks</a> %H A178432 Mituhisa Takasaki, <a href="https://www.jstage.jst.go.jp/article/tmj1911/49/0/49_0_145/_article/-char/en">Abstraction of symmetric transformations</a> (also referenced as Abstractions of symmetric functions), Tohoku Math. J., 49 (1943), 143-207 [in Japanese]. %Y A178432 Cf. A181769, A226173, A242044. %K A178432 nonn,hard,more %O A178432 0,4 %A A178432 _James McCarron_, Dec 21 2010 %E A178432 a(11)-a(12) from _Choiwah Chow_, Oct 30 2023