This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A178481 #19 Sep 16 2017 00:32:42 %S A178481 0,0,5,3,4,4,2,3,2,2,1,3,2,4,2,1,2,1,2,2,5,3,3,1,1,3,1,1,0,1,3,1,2,1, %T A178481 1,0,0,1,3,1,3,2,2,2,1,1,0,3,2,3,4,2,4,2,1,2,3,1,5,4,2,4,1,2,2,3,1,4, %U A178481 4,1,4,1,2,2,3,2,3,4,2,4,2 %N A178481 Number of steps of the map x -> A055566(x), starting at n, before reaching the end of the cycle. %C A178481 a(n) is the number of times taking the 5th powers of the sums of digits before reaching a sum seen before (reaching the last number of the cycle). %C A178481 Example: %C A178481 6 -> 6^5 = 7776 -> (7+7+7+6)^5 = 27^5. %C A178481 27^5 = 14348907 -> (1+4+3+4+8+9+0+7)^5 = 36^5. %C A178481 36^5 = 60466176, last number of the cycle because (6+0+4+6+6+1+7+6)^5 = 36^5 = 60466176 belongs to the list. %C A178481 Generalization for the k-th powers and conjecture: For each k >= 1, iteration of taking the k-th powers of digit sums reaches a cycle. %C A178481 Example with k = 17; start with 3. %C A178481 3^17 = 129140163, sum = 27, %C A178481 27^17 = 2153693963075557766310747, sum = 117, %C A178481 117^17 = 144264558065210807467328187211661877, sum = 153, %C A178481 153^17 = 13796036156758195415808856807283698713, sum = 189, %C A178481 189^17 = 501014933601411817143935347829544613629, sum = 153 is already in the set. %C A178481 [It remains unclear whether the author wanted to define iterations of (sumofdigits of n)^5, compatible with A177148 and A182128, or sumofdigits(n^5) here. I've taken the latter to be more compliant with the first terms of the original submission. - _R. J. Mathar_, Jul 08 2012] %e A178481 a(0) = 0 and a(1) = 0 because 0 -> 0 and 1 -> 1. %e A178481 a(15) = 1 because 15^5 = 759375 -> (7+5+9+3+7+5) = 36, %e A178481 36 ^5 = 60466176 -> (6+0+4+6+6+1+7+6) = 36. %p A178481 A178481 := proc(n) %p A178481 local traj ,c; %p A178481 traj := n ; %p A178481 c := [n] ; %p A178481 while true do %p A178481 traj := A055566(traj) ; %p A178481 if member(traj,c) then %p A178481 return nops(c)-1 ; %p A178481 end if; %p A178481 c := [op(c),traj] ; %p A178481 end do: %p A178481 end proc: %p A178481 seq(A178481(n),n=0..80) ; # _R. J. Mathar_, Jul 08 2012 %Y A178481 Cf. A177148, A182128. %K A178481 nonn,base %O A178481 0,3 %A A178481 _Michel Lagneau_, May 28 2010