A178518 Triangle read by rows: T(n,k) is the number of permutations p of {1,2,...,n} having genus 0 and such that p(1)=k (see first comment for definition of genus).
1, 1, 1, 2, 2, 1, 5, 5, 2, 2, 14, 14, 5, 4, 5, 42, 42, 14, 10, 10, 14, 132, 132, 42, 28, 25, 28, 42, 429, 429, 132, 84, 70, 70, 84, 132, 1430, 1430, 429, 264, 210, 196, 210, 264, 429, 4862, 4862, 1430, 858, 660, 588, 588, 660, 858, 1430, 16796, 16796, 4862, 2860, 2145, 1848, 1764, 1848, 2145, 2860, 4862
Offset: 1
Examples
T(4,3)=2 because we have 3214=(13)(2)(4) and 3241=(134)(2). Triangle starts: 1; 1, 1; 2, 2, 1; 5, 5, 2, 2; 14, 14, 5, 4, 5;
References
- S. Dulucq and R. Simion, Combinatorial statistics on alternating permutations, J. Algebraic Combinatorics, 8, 1998, 169-191.
Crossrefs
Cf. A000108.
Programs
-
Maple
c := proc (n) options operator, arrow: binomial(2*n, n)/(n+1) end proc: a := proc (n, k) if k = 1 then c(n-1) elif k <= n then c(n-k+1)*c(k-2) else 0 end if end proc: for n to 11 do seq(a(n, k), k = 1 .. n) end do; # yields sequence in triangular form
-
Mathematica
t[n_, 1] := CatalanNumber[n-1]; t[n_, k_] := CatalanNumber[n-k+1] * CatalanNumber[k-2]; Table[t[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 10 2013 *)
Formula
T(n,1)=c(n-1); T(n,k) = c(n-k+1)*c(k-2) if 2 <= k <= n, where c(j) = binomial(2j,j)/(j+1) = A000108(j) are the Catalan numbers.
G.f. = G(t,z) = t*z*C(z)+t^2*z*(C(z)-1)*C(tz), where C(z) = (1-sqrt(1-4*z))/(2z) is the Catalan function.
Comments