cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178522 Triangle read by rows: T(n,k) is the number of nodes at level k in the Fibonacci tree of order n (n>=0, 0<=k<=n-1).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 1, 2, 4, 2, 1, 2, 4, 6, 2, 1, 2, 4, 8, 8, 2, 1, 2, 4, 8, 14, 10, 2, 1, 2, 4, 8, 16, 22, 12, 2, 1, 2, 4, 8, 16, 30, 32, 14, 2, 1, 2, 4, 8, 16, 32, 52, 44, 16, 2, 1, 2, 4, 8, 16, 32, 62, 84, 58, 18, 2, 1, 2, 4, 8, 16, 32, 64, 114, 128, 74, 20, 2, 1, 2, 4, 8, 16, 32, 64, 126
Offset: 0

Views

Author

Emeric Deutsch, Jun 15 2010

Keywords

Comments

A Fibonacci tree of order n (n>=2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node.
Sum of entries in row n is A001595(n).
Sum_{k=0..n-1} k*T(n,k) = A178523(n).

Examples

			Triangle starts:
1,
1,
1,2,
1,2,2,
1,2,4,2,
1,2,4,6,2,
1,2,4,8,8,2,
1,2,4,8,14,10,2,
1,2,4,8,16,22,12,2,
1,2,4,8,16,30,32,14,2,
...
		

References

  • D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.

Crossrefs

Cf. A001595, A059214, A178523, A067331, A002940. See A059250 for another version.

Programs

  • Maple
    G := (1-t*z+t*z^2)/((1-z)*(1-t*z-t*z^2)): Gser := simplify(series(G, z = 0, 17)): for n from 0 to 15 do P[n] := sort(coeff(Gser, z, n)) end do: 1; for n to 13 do seq(coeff(P[n], t, k), k = 0 .. n-1) end do; # yields sequence in triangular form

Formula

G.f.: G(t,z)=(1-tz+tz^2)/[(1-z)(1-tz-tz^2)].
T(k,n) = T(k-1,n-1)+T(k-1,n) with T(0,0)=1, T(k,0)=1 for k>0, T(0,n)=2 for n>0. - Frank M Jackson, Aug 30 2011