cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178523 The path length of the Fibonacci tree of order n.

This page as a plain text file.
%I A178523 #66 Apr 25 2025 21:12:12
%S A178523 0,0,2,6,16,36,76,152,294,554,1024,1864,3352,5968,10538,18478,32208,
%T A178523 55852,96420,165800,284110,485330,826752,1404816,2381616,4029216,
%U A178523 6803666,11468502,19300624,32433204,54426364,91216184,152691702,255313658,426460288,711634648
%N A178523 The path length of the Fibonacci tree of order n.
%C A178523 A Fibonacci tree of order n (n>=2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node. The path length of a tree is the sum of the levels of all of its nodes.
%C A178523 This is also the number of configurations of n indistinguishable pairs placed on the vertices of the ladder graph P_2 X P_n such that all but one such pair are joined by an edge; equivalently the number of "(n-1)-domino" configurations in the game of memory played on a 2 X n rectangular array, see [Young]. - _Donovan Young_, Oct 23 2018
%D A178523 Ralph P. Grimaldi, Properties of Fibonacci trees, In Proceedings of the Twenty-second Southeastern Conference on Combinatorics, Graph Theory, and Computing (Baton Rouge, LA, 1991); Congressus Numerantium 84 (1991), 21-32. - _Emeric Deutsch_, Sep 13 2010
%D A178523 D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.
%H A178523 Muniru A Asiru, <a href="/A178523/b178523.txt">Table of n, a(n) for n = 0..4500</a>
%H A178523 Carlos Alirio Rico Acevedo, and Ana Paula Chaves, <a href="https://arxiv.org/abs/1903.07490">Double-Recurrence Fibonacci Numbers and Generalizations</a>, arXiv:1903.07490 [math.NT], 2019.
%H A178523 Y. Horibe, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/20-2/horibe.pdf">An entropy view of Fibonacci trees</a>, Fibonacci Quarterly, 20, No. 2, 1982, 168-178.
%H A178523 W. Kuszmaul, <a href="http://arxiv.org/abs/1509.08216">Fast Algorithms for Finding Pattern Avoiders and Counting Pattern Occurrences in Permutations</a>, arXiv preprint arXiv:1509.08216 [cs.DM], 2015-2017.
%H A178523 D. Young, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL21/Young/young2.html">The Number of Domino Matchings in the Game of Memory</a>, Journal of Integer Sequences, Vol. 21 (2018), Article 18.8.1.
%H A178523 Donovan Young, <a href="https://arxiv.org/abs/1905.13165">Generating Functions for Domino Matchings in the 2 * k Game of Memory</a>, arXiv:1905.13165 [math.CO], 2019. Also in <a href="https://www.emis.de/journals/JIS/VOL22/Young/young13.html">J. Int. Seq.</a>, Vol. 22 (2019), Article 19.8.7.
%H A178523 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,-1,-3,1,1).
%F A178523 a(n) = 2 + (2/5)*(4n-9)*F(n) + (2/5)*(3n-5)*F(n-1), where F(n) = A000045(n) (Fibonacci numbers).
%F A178523 a(n) = 2*A006478(n+1).
%F A178523 a(n) = Sum_{k=0..n-1} k*A178522(n,k).
%F A178523 G.f.: 2*z^2/((1-z)*(1-z-z^2)^2).
%F A178523 From _Emeric Deutsch_, Sep 13 2010: (Start)
%F A178523 a(0)=a(1)=0, a(n) = a(n-1)+a(n-2)+2F(n+1)-2 if n>=2; here F(j)=A000045(j) are the Fibonacci numbers (see the Grimaldi reference, Eq. (**) on p. 23).
%F A178523 An explicit formula for a(n) is given in the Grimaldi reference (Theorem 2).
%F A178523 (End)
%F A178523 E.g.f.: 2*exp(x) + 2*exp(x/2)*(5*(4*x - 5)*cosh(sqrt(5)*x/2) + sqrt(5)*(10*x - 13)*sinh(sqrt(5)*x/2))/25. - _Stefano Spezia_, Dec 04 2023
%e A178523 a(2)=2 because the Fibonacci tree of order 2 is /\ with path length 1 + 1. - _Emeric Deutsch_, Sep 13 2010
%p A178523 with(combinat): a := proc (n) options operator, arrow: 2+((8/5)*n-18/5)*fibonacci(n)+((6/5)*n-2)*fibonacci(n-1) end proc: seq(a(n), n = 0 .. 35);
%p A178523 G := 2*z^2/((1-z)*(1-z-z^2)^2): Gser := series(G, z = 0, 40): seq(coeff(Gser, z, n), n = 0 .. 35);
%t A178523 Table[2 +2/5 (4n-9) Fibonacci[n] +2/5 (3n -5) Fibonacci[n-1], {n, 0, 40}] (* or *) LinearRecurrence[{3, -1, -3, 1, 1}, {0, 0, 2, 6, 16}, 40] (* _Harvey P. Dale_, Oct 02 2016 *)
%o A178523 (GAP) a:=[0,2];;  for n in [3..35] do a[n]:=a[n-1]+a[n-2]+ 2*Fibonacci(n +1) -2; od; Concatenation([0],a); # _Muniru A Asiru_, Oct 23 2018
%o A178523 (Magma) [2+(2/5)*(4*n-9)*Fibonacci(n)+(2/5)*(3*n-5)*Fibonacci(n-1): n in [0..40]]; // _Vincenzo Librandi_, Oct 24 2018
%o A178523 (PARI) vector(40, n, n--; (10+(8*n-18)*fibonacci(n)+(6*n-10)*fibonacci(n-1))/5) \\ _G. C. Greubel_, Jan 31 2019
%o A178523 (Sage) [(10+(8*n-18)*fibonacci(n)+(6*n-10)*fibonacci(n-1))/5 for n in range(40)] # _G. C. Greubel_, Jan 31 2019
%Y A178523 Cf. A000045, A006478, A178522, A002940, A067331.
%K A178523 nonn,easy
%O A178523 0,3
%A A178523 _Emeric Deutsch_, Jun 15 2010